Distinct activity-gated pathways mediate attraction and aversion to CO2 in Drosophila
Floris Breugel,
Ainul Huda and
Michael H. Dickinson ()
Additional contact information
Floris Breugel: California Institute of Technology
Ainul Huda: California Institute of Technology
Michael H. Dickinson: California Institute of Technology
Nature, 2018, vol. 564, issue 7736, 420-424
Abstract:
Abstract Carbon dioxide is produced by many organic processes and is a convenient volatile cue for insects1 that are searching for blood hosts2, flowers3, communal nests4, fruit5 and wildfires6. Although Drosophila melanogaster feed on yeast that produce CO2 and ethanol during fermentation, laboratory experiments7–12 suggest that walking flies avoid CO2. Here we resolve this paradox by showing that both flying and walking Drosophila find CO2 attractive, but only when they are in an active state associated with foraging. Their aversion to CO2 at low-activity levels may be an adaptation to avoid parasites that seek CO2, or to avoid succumbing to respiratory acidosis in the presence of high concentrations of CO2 that exist in nature13,14. In contrast to CO2, flies are attracted to ethanol in all behavioural states, and invest twice the time searching near ethanol compared to CO2. These behavioural differences reflect the fact that ethanol is a unique signature of yeast fermentation, whereas CO2 is generated by many natural processes. Using genetic tools, we determined that the evolutionarily conserved ionotropic co-receptor IR25a is required for CO2 attraction, and that the receptors necessary for CO2 avoidance are not involved in this attraction. Our study lays the foundation for future research to determine the neural circuits that underlie both state- and odorant-dependent decision-making in Drosophila.
Keywords: Walking Assay; Odor Presentation; Total Volume Flow Rate; Apple Cider Vinegar; Aristae (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41586-018-0732-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:564:y:2018:i:7736:d:10.1038_s41586-018-0732-8
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-018-0732-8
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().