EconPapers    
Economics at your fingertips  
 

Structure of native lens connexin 46/50 intercellular channels by cryo-EM

Janette B. Myers, Bassam G. Haddad, Susan E. O’Neill, Dror S. Chorev, Craig C. Yoshioka, Carol V. Robinson, Daniel M. Zuckerman and Steve L. Reichow ()
Additional contact information
Janette B. Myers: Portland State University
Bassam G. Haddad: Portland State University
Susan E. O’Neill: Portland State University
Dror S. Chorev: University of Oxford
Craig C. Yoshioka: Oregon Health and Science University
Carol V. Robinson: University of Oxford
Daniel M. Zuckerman: Oregon Health and Science University
Steve L. Reichow: Portland State University

Nature, 2018, vol. 564, issue 7736, 372-377

Abstract: Abstract Gap junctions establish direct pathways for cell-to-cell communication through the assembly of twelve connexin subunits that form intercellular channels connecting neighbouring cells. Co-assembly of different connexin isoforms produces channels with unique properties and enables communication across cell types. Here we used single-particle cryo-electron microscopy to investigate the structural basis of connexin co-assembly in native lens gap junction channels composed of connexin 46 and connexin 50 (Cx46/50). We provide the first comparative analysis to connexin 26 (Cx26), which—together with computational studies—elucidates key energetic features governing gap junction permselectivity. Cx46/50 adopts an open-state conformation that is distinct from the Cx26 crystal structure, yet it appears to be stabilized by a conserved set of hydrophobic anchoring residues. ‘Hot spots’ of genetic mutations linked to hereditary cataract formation map to the core structural–functional elements identified in Cx46/50, suggesting explanations for many of the disease-causing effects.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.nature.com/articles/s41586-018-0786-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:564:y:2018:i:7736:d:10.1038_s41586-018-0786-7

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-018-0786-7

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:564:y:2018:i:7736:d:10.1038_s41586-018-0786-7