EconPapers    
Economics at your fingertips  
 

Signatures of a jet cocoon in early spectra of a supernova associated with a γ-ray burst

L. Izzo (), A. de Ugarte Postigo, K. Maeda, C. C. Thöne, D. A. Kann, M. Della Valle, A. Sagues Carracedo, M. J. Michałowski, P. Schady, S. Schmidl, J. Selsing, R. L. C. Starling, A. Suzuki, K. Bensch, J. Bolmer, S. Campana, Z. Cano, S. Covino, J. P. U. Fynbo, D. H. Hartmann, K. E. Heintz, J. Hjorth, J. Japelj, K. Kamiński, L. Kaper, C. Kouveliotou, M. Krużyński, T. Kwiatkowski, G. Leloudas, A. J. Levan, D. B. Malesani, T. Michałowski, S. Piranomonte, G. Pugliese, A. Rossi, R. Sánchez-Ramírez, S. Schulze, D. Steeghs, N. R. Tanvir, K. Ulaczyk, S. D. Vergani and K. Wiersema
Additional contact information
L. Izzo: Instituto de Astrofísica de Andalucía (IAA-CSIC)
A. de Ugarte Postigo: Instituto de Astrofísica de Andalucía (IAA-CSIC)
K. Maeda: Kyoto University
C. C. Thöne: Instituto de Astrofísica de Andalucía (IAA-CSIC)
D. A. Kann: Instituto de Astrofísica de Andalucía (IAA-CSIC)
M. Della Valle: Instituto de Astrofísica de Andalucía (IAA-CSIC)
A. Sagues Carracedo: Stockholm University
M. J. Michałowski: Adam Mickiewicz University
P. Schady: Max-Planck-Institut für Extraterrestrische Physik
S. Schmidl: Thüringer Landessternwarte Tautenburg
J. Selsing: DARK, Niels Bohr Institute, University of Copenaghen
R. L. C. Starling: University of Leicester
A. Suzuki: National Institutes of Natural Sciences
K. Bensch: Instituto de Astrofísica de Andalucía (IAA-CSIC)
J. Bolmer: Max-Planck-Institut für Extraterrestrische Physik
S. Campana: INAF—Osservatorio Astronomico di Brera
Z. Cano: Instituto de Astrofísica de Andalucía (IAA-CSIC)
S. Covino: INAF—Osservatorio Astronomico di Brera
J. P. U. Fynbo: The Cosmic Dawn Center (DAWN), Niels Bohr Institute, University of Copenhagen
D. H. Hartmann: Clemson University
K. E. Heintz: The Cosmic Dawn Center (DAWN), Niels Bohr Institute, University of Copenhagen
J. Hjorth: DARK, Niels Bohr Institute, University of Copenaghen
J. Japelj: University of Amsterdam
K. Kamiński: Adam Mickiewicz University
L. Kaper: University of Amsterdam
C. Kouveliotou: The George Washington University
M. Krużyński: Adam Mickiewicz University
T. Kwiatkowski: Adam Mickiewicz University
G. Leloudas: DARK, Niels Bohr Institute, University of Copenaghen
A. J. Levan: University of Warwick
D. B. Malesani: DARK, Niels Bohr Institute, University of Copenaghen
T. Michałowski: Adam Mickiewicz University
S. Piranomonte: INAF—Osservatorio Astronomico di Roma
G. Pugliese: University of Amsterdam
A. Rossi: INAF—Osservatorio di Astrofisica e Scienza dello Spazio di Bologna
R. Sánchez-Ramírez: INAF—Istituto di Astrofisica e Planetologia Spaziali
S. Schulze: Weizmann Institute of Science
D. Steeghs: University of Warwick
N. R. Tanvir: University of Leicester
K. Ulaczyk: University of Warwick
S. D. Vergani: GEPI, Observatoire de Paris, PSL University, CNRS
K. Wiersema: University of Leicester

Nature, 2019, vol. 565, issue 7739, 324-327

Abstract: Abstract Long γ-ray bursts are associated with energetic, broad-lined, stripped-envelope supernovae1,2 and as such mark the death of massive stars. The scarcity of such events nearby and the brightness of the γ-ray burst afterglow, which dominates the emission in the first few days after the burst, have so far prevented the study of the very early evolution of supernovae associated with γ-ray bursts3. In hydrogen-stripped supernovae that are not associated with γ-ray bursts, an excess of high-velocity (roughly 30,000 kilometres per second) material has been interpreted as a signature of a choked jet, which did not emerge from the progenitor star and instead deposited all of its energy in a thermal cocoon4. Here we report multi-epoch spectroscopic observations of the supernova SN 2017iuk, which is associated with the γ-ray burst GRB 171205A. Our spectra display features at extremely high expansion velocities (around 115,000 kilometres per second) within the first day after the burst5,6. Using spectral synthesis models developed for SN 2017iuk, we show that these features are characterized by chemical abundances that differ from those observed in the ejecta of SN 2017iuk at later times. We further show that the high-velocity features originate from the mildly relativistic hot cocoon that is generated by an ultra-relativistic jet within the γ-ray burst expanding and decelerating into the medium that surrounds the progenitor star7,8. This cocoon rapidly becomes transparent9 and is outshone by the supernova emission, which starts to dominate the emission three days after the burst.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41586-018-0826-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:565:y:2019:i:7739:d:10.1038_s41586-018-0826-3

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-018-0826-3

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:565:y:2019:i:7739:d:10.1038_s41586-018-0826-3