EconPapers    
Economics at your fingertips  
 

Photoredox catalysis using infrared light via triplet fusion upconversion

Benjamin D. Ravetz, Andrew B. Pun, Emily M. Churchill, Daniel N. Congreve (), Tomislav Rovis () and Luis M. Campos ()
Additional contact information
Benjamin D. Ravetz: Columbia University
Andrew B. Pun: Columbia University
Emily M. Churchill: Columbia University
Daniel N. Congreve: Rowland Institute at Harvard University
Tomislav Rovis: Columbia University
Luis M. Campos: Columbia University

Nature, 2019, vol. 565, issue 7739, 343-346

Abstract: Abstract Recent advances in photoredox catalysis have made it possible to achieve various challenging synthetic transformations, polymerizations and surface modifications1–3. All of these reactions require ultraviolet- or visible-light stimuli; however, the use of visible-light irradiation has intrinsic challenges. For example, the penetration of visible light through most reaction media is very low, leading to problems in large-scale reactions. Moreover, reactants can compete with photocatalysts for the absorption of incident light, limiting the scope of the reactions. These problems can be overcome by the use of near-infrared light, which has a much higher penetration depth through various media, notably biological tissue4. Here we demonstrate various photoredox transformations under infrared radiation by utilizing the photophysical process of triplet fusion upconversion, a mechanism by which two low-energy photons are converted into a higher-energy photon. We show that this is a general strategy applicable to a wide range of photoredox reactions. We tune the upconversion components to adjust the output light, accessing both orange light and blue light from low-energy infrared light, by pairwise manipulation of the sensitizer and annihilator. We further demonstrate that the annihilator itself can be used as a photocatalyst, thus simplifying the reaction. This approach enables catalysis of high-energy transformations through several opaque barriers using low-energy infrared light.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
https://www.nature.com/articles/s41586-018-0835-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:565:y:2019:i:7739:d:10.1038_s41586-018-0835-2

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-018-0835-2

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:565:y:2019:i:7739:d:10.1038_s41586-018-0835-2