EconPapers    
Economics at your fingertips  
 

Disruption of the Orion molecular core 1 by wind from the massive star θ1 Orionis C

C. Pabst, R. Higgins, J. R. Goicoechea, D. Teyssier, O. Berne, E. Chambers, M. Wolfire, S. T. Suri, R. Guesten, J. Stutzki, U. U. Graf, C. Risacher and A. G. G. M. Tielens ()
Additional contact information
C. Pabst: Leiden University
R. Higgins: I. Physikalisches Institut der Universität zu Köln
J. R. Goicoechea: Instituto de Física Fundamental (CSIC)
D. Teyssier: Urbanizacion Villafranca del Castillo
O. Berne: CNRS, CNES, Université Paul Sabatier
E. Chambers: USRA/SOFIA, NASA Ames Research Center
M. Wolfire: University of Maryland
S. T. Suri: I. Physikalisches Institut der Universität zu Köln
R. Guesten: Max-Planck-Institut für Radioastronomie
J. Stutzki: I. Physikalisches Institut der Universität zu Köln
U. U. Graf: I. Physikalisches Institut der Universität zu Köln
C. Risacher: Max-Planck-Institut für Radioastronomie
A. G. G. M. Tielens: Leiden University

Nature, 2019, vol. 565, issue 7741, 618-621

Abstract: Abstract Massive stars inject mechanical and radiative energy into the surrounding environment, which stirs it up, heats the gas, produces cloud and intercloud phases in the interstellar medium, and disrupts molecular clouds (the birth sites of new stars1,2). Stellar winds, supernova explosions and ionization by ultraviolet photons control the lifetimes of molecular clouds3–7. Theoretical studies predict that momentum injection by radiation should dominate that by stellar winds8, but this has been difficult to assess observationally. Velocity-resolved large-scale images in the fine-structure line of ionized carbon ([C ii]) provide an observational diagnostic for the radiative energy input and the dynamics of the interstellar medium around massive stars. Here we report observations of a one-square-degree region (about 7 parsecs in diameter) of Orion molecular core 1—the region nearest to Earth that exhibits massive-star formation—at a resolution of 16 arcseconds (0.03 parsecs) in the [C ii] line at 1.9 terahertz (158 micrometres). The results reveal that the stellar wind originating from the massive star θ1 Orionis C has swept up the surrounding material to create a ‘bubble’ roughly four parsecs in diameter with a 2,600-solar-mass shell, which is expanding at 13 kilometres per second. This finding demonstrates that the mechanical energy from the stellar wind is converted very efficiently into kinetic energy of the shell and causes more disruption of the Orion molecular core 1 than do photo-ionization and evaporation or future supernova explosions.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41586-018-0844-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:565:y:2019:i:7741:d:10.1038_s41586-018-0844-1

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-018-0844-1

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:565:y:2019:i:7741:d:10.1038_s41586-018-0844-1