Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2
Lina Cao,
Wei Liu,
Qiquan Luo,
Ruoting Yin,
Bing Wang,
Jonas Weissenrieder,
Markus Soldemo,
Huan Yan,
Yue Lin,
Zhihu Sun,
Chao Ma,
Wenhua Zhang,
Si Chen,
Hengwei Wang,
Qiaoqiao Guan,
Tao Yao,
Shiqiang Wei (),
Jinlong Yang () and
Junling Lu ()
Additional contact information
Lina Cao: University of Science and Technology of China
Wei Liu: University of Science and Technology of China
Qiquan Luo: University of Science and Technology of China
Ruoting Yin: University of Science and Technology of China
Bing Wang: University of Science and Technology of China
Jonas Weissenrieder: KTH Royal Institute of Technology
Markus Soldemo: KTH Royal Institute of Technology
Huan Yan: University of Science and Technology of China
Yue Lin: University of Science and Technology of China
Zhihu Sun: University of Science and Technology of China
Chao Ma: University of Science and Technology of China
Wenhua Zhang: University of Science and Technology of China
Si Chen: University of Science and Technology of China
Hengwei Wang: University of Science and Technology of China
Qiaoqiao Guan: University of Science and Technology of China
Tao Yao: University of Science and Technology of China
Shiqiang Wei: University of Science and Technology of China
Jinlong Yang: University of Science and Technology of China
Junling Lu: University of Science and Technology of China
Nature, 2019, vol. 565, issue 7741, 631-635
Abstract:
Abstract Proton-exchange-membrane fuel cells (PEMFCs) are attractive next-generation power sources for use in vehicles and other applications1, with development efforts focusing on improving the catalyst system of the fuel cell. One problem is catalyst poisoning by impurity gases such as carbon monoxide (CO), which typically comprises about one per cent of hydrogen fuel2–4. A possible solution is on-board hydrogen purification, which involves preferential oxidation of CO in hydrogen (PROX)3–7. However, this approach is challenging8–15 because the catalyst needs to be active and selective towards CO oxidation over a broad range of low temperatures so that CO is efficiently removed (to below 50 parts per million) during continuous PEMFC operation (at about 353 kelvin) and, in the case of automotive fuel cells, during frequent cold-start periods. Here we show that atomically dispersed iron hydroxide, selectively deposited on silica-supported platinum (Pt) nanoparticles, enables complete and 100 per cent selective CO removal through the PROX reaction over the broad temperature range of 198 to 380 kelvin. We find that the mass-specific activity of this system is about 30 times higher than that of more conventional catalysts consisting of Pt on iron oxide supports. In situ X-ray absorption fine-structure measurements reveal that most of the iron hydroxide exists as Fe1(OH)x clusters anchored on the Pt nanoparticles, with density functional theory calculations indicating that Fe1(OH)x–Pt single interfacial sites can readily react with CO and facilitate oxygen activation. These findings suggest that in addition to strategies that target oxide-supported precious-metal nanoparticles or isolated metal atoms, the deposition of isolated transition-metal complexes offers new ways of designing highly active metal catalysts.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
https://www.nature.com/articles/s41586-018-0869-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:565:y:2019:i:7741:d:10.1038_s41586-018-0869-5
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-018-0869-5
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().