EconPapers    
Economics at your fingertips  
 

Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting

Xu Zhang, Jesús Grajal, Jose Luis Vazquez-Roy, Ujwal Radhakrishna, Xiaoxue Wang, Winston Chern, Lin Zhou, Yuxuan Lin, Pin-Chun Shen, Xiang Ji, Xi Ling, Ahmad Zubair, Yuhao Zhang, Han Wang, Madan Dubey, Jing Kong, Mildred Dresselhaus and Tomás Palacios ()
Additional contact information
Xu Zhang: Massachusetts Institute of Technology
Jesús Grajal: Universidad Politécnica de Madrid
Jose Luis Vazquez-Roy: University Carlos III of Madrid
Ujwal Radhakrishna: Massachusetts Institute of Technology
Xiaoxue Wang: Massachusetts Institute of Technology
Winston Chern: Massachusetts Institute of Technology
Lin Zhou: Massachusetts Institute of Technology
Yuxuan Lin: Massachusetts Institute of Technology
Pin-Chun Shen: Massachusetts Institute of Technology
Xiang Ji: Massachusetts Institute of Technology
Xi Ling: Boston University
Ahmad Zubair: Massachusetts Institute of Technology
Yuhao Zhang: Massachusetts Institute of Technology
Han Wang: University of Southern California
Madan Dubey: Army Research Laboratory
Jing Kong: Massachusetts Institute of Technology
Mildred Dresselhaus: Massachusetts Institute of Technology
Tomás Palacios: Massachusetts Institute of Technology

Nature, 2019, vol. 566, issue 7744, 368-372

Abstract: Abstract The mechanical and electronic properties of two-dimensional materials make them promising for use in flexible electronics1–3. Their atomic thickness and large-scale synthesis capability could enable the development of ‘smart skin’1,3–5, which could transform ordinary objects into an intelligent distributed sensor network6. However, although many important components of such a distributed electronic system have already been demonstrated (for example, transistors, sensors and memory devices based on two-dimensional materials1,2,4,7), an efficient, flexible and always-on energy-harvesting solution, which is indispensable for self-powered systems, is still missing. Electromagnetic radiation from Wi-Fi systems operating at 2.4 and 5.9 gigahertz8 is becoming increasingly ubiquitous and would be ideal to harvest for powering future distributed electronics. However, the high frequencies used for Wi-Fi communications have remained elusive to radiofrequency harvesters (that is, rectennas) made of flexible semiconductors owing to their limited transport properties9–12. Here we demonstrate an atomically thin and flexible rectenna based on a MoS2 semiconducting–metallic-phase heterojunction with a cutoff frequency of 10 gigahertz, which represents an improvement in speed of roughly one order of magnitude compared with current state-of-the-art flexible rectifiers9–12. This flexible MoS2-based rectifier operates up to the X-band8 (8 to 12 gigahertz) and covers most of the unlicensed industrial, scientific and medical radio band, including the Wi-Fi channels. By integrating the ultrafast MoS2 rectifier with a flexible Wi-Fi-band antenna, we fabricate a fully flexible and integrated rectenna that achieves wireless energy harvesting of electromagnetic radiation in the Wi-Fi band with zero external bias (battery-free). Moreover, our MoS2 rectifier acts as a flexible mixer, realizing frequency conversion beyond 10 gigahertz. This work provides a universal energy-harvesting building block that can be integrated with various flexible electronic systems.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41586-019-0892-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:566:y:2019:i:7744:d:10.1038_s41586-019-0892-1

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-019-0892-1

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:566:y:2019:i:7744:d:10.1038_s41586-019-0892-1