EconPapers    
Economics at your fingertips  
 

Dynamics of oligodendrocyte generation in multiple sclerosis

Maggie S. Y. Yeung, Mehdi Djelloul, Embla Steiner, Samuel Bernard, Mehran Salehpour, Göran Possnert, Lou Brundin and Jonas Frisén ()
Additional contact information
Maggie S. Y. Yeung: Karolinska Institutet
Mehdi Djelloul: Karolinska Institutet
Embla Steiner: Karolinska Institutet
Samuel Bernard: Institut Camille Jordan, CNRS UMR 5208, University of Lyon
Mehran Salehpour: Ion Physics, Uppsala University
Göran Possnert: Ion Physics, Uppsala University
Lou Brundin: Division of Neurology, Karolinska Institutet, Karolinska University Hospital
Jonas Frisén: Karolinska Institutet

Nature, 2019, vol. 566, issue 7745, 538-542

Abstract: Abstract Oligodendrocytes wrap nerve fibres in the central nervous system with layers of specialized cell membrane to form myelin sheaths1. Myelin is destroyed by the immune system in multiple sclerosis, but myelin is thought to regenerate and neurological function can be recovered. In animal models of demyelinating disease, myelin is regenerated by newly generated oligodendrocytes, and remaining mature oligodendrocytes do not seem to contribute to this process2–4. Given the major differences in the dynamics of oligodendrocyte generation and adaptive myelination between rodents and humans5–9, it is not clear how well experimental animal models reflect the situation in multiple sclerosis. Here, by measuring the integration of 14C derived from nuclear testing in genomic DNA10, we assess the dynamics of oligodendrocyte generation in patients with multiple sclerosis. The generation of new oligodendrocytes was increased several-fold in normal-appearing white matter in a subset of individuals with very aggressive multiple sclerosis, but not in most subjects with the disease, demonstrating an inherent potential to substantially increase oligodendrocyte generation that fails in most patients. Oligodendrocytes in shadow plaques—thinly myelinated lesions that are thought to represent remyelinated areas—were old in patients with multiple sclerosis. The absence of new oligodendrocytes in shadow plaques suggests that remyelination of lesions occurs transiently or not at all, or that myelin is regenerated by pre-existing, and not new, oligodendrocytes in multiple sclerosis. We report unexpected oligodendrocyte generation dynamics in multiple sclerosis, and this should guide the use of current, and the development of new, therapies.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41586-018-0842-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:566:y:2019:i:7745:d:10.1038_s41586-018-0842-3

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-018-0842-3

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:566:y:2019:i:7745:d:10.1038_s41586-018-0842-3