A distance to the Large Magellanic Cloud that is precise to one per cent
G. Pietrzyński (),
D. Graczyk,
A. Gallenne,
W. Gieren,
I. B. Thompson,
B. Pilecki,
P. Karczmarek,
M. Górski,
K. Suchomska,
M. Taormina,
B. Zgirski,
P. Wielgórski,
Z. Kołaczkowski,
P. Konorski,
S. Villanova,
N. Nardetto,
P. Kervella,
F. Bresolin,
R. P. Kudritzki,
J. Storm,
R. Smolec and
W. Narloch
Additional contact information
G. Pietrzyński: Nicolaus Copernicus Astronomical Centre
D. Graczyk: Nicolaus Copernicus Astronomical Centre
A. Gallenne: European Southern Observatory
W. Gieren: Departamento de Astronomìa
I. B. Thompson: Carnegie Observatories
B. Pilecki: Nicolaus Copernicus Astronomical Centre
P. Karczmarek: Warsaw University Observatory
M. Górski: Departamento de Astronomìa
K. Suchomska: Warsaw University Observatory
M. Taormina: Nicolaus Copernicus Astronomical Centre
B. Zgirski: Nicolaus Copernicus Astronomical Centre
P. Wielgórski: Nicolaus Copernicus Astronomical Centre
Z. Kołaczkowski: Nicolaus Copernicus Astronomical Centre
P. Konorski: Warsaw University Observatory
S. Villanova: Departamento de Astronomìa
N. Nardetto: Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange
P. Kervella: LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Univ. Paris Diderot, Sorbonne Paris Cité
F. Bresolin: Institute for Astronomy
R. P. Kudritzki: Institute for Astronomy
J. Storm: Leibniz Institute for Astrophysics
R. Smolec: Nicolaus Copernicus Astronomical Centre
W. Narloch: Nicolaus Copernicus Astronomical Centre
Nature, 2019, vol. 567, issue 7747, 200-203
Abstract:
Abstract In the era of precision cosmology, it is essential to determine the Hubble constant empirically with an accuracy of one per cent or better1. At present, the uncertainty on this constant is dominated by the uncertainty in the calibration of the Cepheid period–luminosity relationship2,3 (also known as the Leavitt law). The Large Magellanic Cloud has traditionally served as the best galaxy with which to calibrate Cepheid period–luminosity relations, and as a result has become the best anchor point for the cosmic distance scale4,5. Eclipsing binary systems composed of late-type stars offer the most precise and accurate way to measure the distance to the Large Magellanic Cloud. Currently the limit of the precision attainable with this technique is about two per cent, and is set by the precision of the existing calibrations of the surface brightness–colour relation5,6. Here we report a calibration of the surface brightness–colour relation with a precision of 0.8 per cent. We use this calibration to determine a geometrical distance to the Large Magellanic Cloud that is precise to 1 per cent based on 20 eclipsing binary systems. The final distance is 49.59 ± 0.09 (statistical) ± 0.54 (systematic) kiloparsecs.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41586-019-0999-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:567:y:2019:i:7747:d:10.1038_s41586-019-0999-4
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-019-0999-4
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().