EconPapers    
Economics at your fingertips  
 

Deacylative transformations of ketones via aromatization-promoted C–C bond activation

Yan Xu, Xiaotian Qi, Pengfei Zheng, Carlo C. Berti, Peng Liu () and Guangbin Dong ()
Additional contact information
Yan Xu: University of Chicago
Xiaotian Qi: University of Pittsburgh
Pengfei Zheng: University of Chicago
Carlo C. Berti: University of Chicago
Peng Liu: University of Pittsburgh
Guangbin Dong: University of Chicago

Nature, 2019, vol. 567, issue 7748, 373-378

Abstract: Abstract Carbon–hydrogen (C–H) and carbon–carbon (C–C) bonds are the main constituents of organic matter. Recent advances in C–H functionalization technology have vastly expanded our toolbox for organic synthesis1. By contrast, C–C activation methods that enable editing of the molecular skeleton remain limited2–7. Several methods have been proposed for catalytic C–C activation, particularly with ketone substrates, that are typically promoted by using either ring-strain release as a thermodynamic driving force4,6 or directing groups5,7 to control the reaction outcome. Although effective, these strategies require substrates that contain highly strained ketones or a preinstalled directing group, or are limited to more specialist substrate classes5. Here we report a general C–C activation mode driven by aromatization of a pre-aromatic intermediate formed in situ. This reaction is suitable for various ketone substrates, is catalysed by an iridium/phosphine combination and is promoted by a hydrazine reagent and 1,3-dienes. Specifically, the acyl group is removed from the ketone and transformed to a pyrazole, and the resulting alkyl fragment undergoes various transformations. These include the deacetylation of methyl ketones, carbenoid-free formal homologation of aliphatic linear ketones and deconstructive pyrazole synthesis from cyclic ketones. Given that ketones are prevalent in feedstock chemicals, natural products and pharmaceuticals, these transformations could offer strategic bond disconnections in the synthesis of complex bioactive molecules.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41586-019-0926-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:567:y:2019:i:7748:d:10.1038_s41586-019-0926-8

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-019-0926-8

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:567:y:2019:i:7748:d:10.1038_s41586-019-0926-8