EconPapers    
Economics at your fingertips  
 

Structural basis of lipopolysaccharide extraction by the LptB2FGC complex

Yanyan Li, Benjamin J. Orlando and Maofu Liao ()
Additional contact information
Yanyan Li: Harvard Medical School
Benjamin J. Orlando: Harvard Medical School
Maofu Liao: Harvard Medical School

Nature, 2019, vol. 567, issue 7749, 486-490

Abstract: Abstract In Gram-negative bacteria, lipopolysaccharide is essential for outer membrane formation and antibiotic resistance. The seven lipopolysaccharide transport (Lpt) proteins A–G move lipopolysaccharide from the inner to the outer membrane. The ATP-binding cassette transporter LptB2FG, which tightly associates with LptC, extracts lipopolysaccharide out of the inner membrane. The mechanism of the LptB2FG–LptC complex (LptB2FGC) and the role of LptC in lipopolysaccharide transport are poorly understood. Here we characterize the structures of LptB2FG and LptB2FGC in nucleotide-free and vanadate-trapped states, using single-particle cryo-electron microscopy. These structures resolve the bound lipopolysaccharide, reveal transporter–lipopolysaccharide interactions with side-chain details and uncover how the capture and extrusion of lipopolysaccharide are coupled to conformational rearrangements of LptB2FGC. LptC inserts its transmembrane helix between the two transmembrane domains of LptB2FG, which represents a previously unknown regulatory mechanism for ATP-binding cassette transporters. Our results suggest a role for LptC in achieving efficient lipopolysaccharide transport, by coordinating the action of LptB2FG in the inner membrane and Lpt protein interactions in the periplasm.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41586-019-1025-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:567:y:2019:i:7749:d:10.1038_s41586-019-1025-6

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-019-1025-6

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:567:y:2019:i:7749:d:10.1038_s41586-019-1025-6