EconPapers    
Economics at your fingertips  
 

Climatic controls of decomposition drive the global biogeography of forest-tree symbioses

B. S. Steidinger, T. W. Crowther (), J. Liang (), M. E. Nuland, G. D. A. Werner, P. B. Reich, G. J. Nabuurs, S. de-Miguel, M. Zhou, N. Picard, B. Herault, X. Zhao, C. Zhang, D. Routh and K. G. Peay ()
Additional contact information
B. S. Steidinger: Stanford University
T. W. Crowther: ETH Zürich
J. Liang: Purdue University
M. E. Nuland: Stanford University
G. D. A. Werner: University of Oxford
P. B. Reich: University of Minnesota
G. J. Nabuurs: Wageningen University and Research
S. de-Miguel: Universitat de Lleida
M. Zhou: Purdue University
N. Picard: Food and Agriculture Organization of the United Nations
B. Herault: University of Montpellier
X. Zhao: Beijing Forestry University
C. Zhang: Beijing Forestry University
D. Routh: ETH Zürich
K. G. Peay: Stanford University

Nature, 2019, vol. 569, issue 7756, 404-408

Abstract: Abstract The identity of the dominant root-associated microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools1,2, sequester carbon3,4 and withstand the effects of climate change5,6. Characterizing the global distribution of these symbioses and identifying the factors that control this distribution are thus integral to understanding the present and future functioning of forest ecosystems. Here we generate a spatially explicit global map of the symbiotic status of forests, using a database of over 1.1 million forest inventory plots that collectively contain over 28,000 tree species. Our analyses indicate that climate variables—in particular, climatically controlled variation in the rate of decomposition—are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal trees, which represent only 2% of all plant species7, constitute approximately 60% of tree stems on Earth. Ectomycorrhizal symbiosis dominates forests in which seasonally cold and dry climates inhibit decomposition, and is the predominant form of symbiosis at high latitudes and elevation. By contrast, arbuscular mycorrhizal trees dominate in aseasonal, warm tropical forests, and occur with ectomycorrhizal trees in temperate biomes in which seasonally warm-and-wet climates enhance decomposition. Continental transitions between forests dominated by ectomycorrhizal or arbuscular mycorrhizal trees occur relatively abruptly along climate-driven decomposition gradients; these transitions are probably caused by positive feedback effects between plants and microorganisms. Symbiotic nitrogen fixers—which are insensitive to climatic controls on decomposition (compared with mycorrhizal fungi)—are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient that we document provides a spatially explicit quantitative understanding of microbial symbioses at the global scale, and demonstrates the critical role of microbial mutualisms in shaping the distribution of plant species.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
https://www.nature.com/articles/s41586-019-1128-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:569:y:2019:i:7756:d:10.1038_s41586-019-1128-0

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-019-1128-0

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:569:y:2019:i:7756:d:10.1038_s41586-019-1128-0