Transcription factors and 3D genome conformation in cell-fate decisions
Ralph Stadhouders (),
Guillaume J. Filion and
Thomas Graf ()
Additional contact information
Ralph Stadhouders: Erasmus MC
Guillaume J. Filion: The Barcelona Institute of Science and Technology
Thomas Graf: The Barcelona Institute of Science and Technology
Nature, 2019, vol. 569, issue 7756, 345-354
Abstract:
Abstract How cells adopt different identities has long fascinated biologists. Signal transduction in response to environmental cues results in the activation of transcription factors that determine the gene-expression program characteristic of each cell type. Technological advances in the study of 3D chromatin folding are bringing the role of genome conformation in transcriptional regulation to the fore. Characterizing this role of genome architecture has profound implications, not only for differentiation and development but also for diseases including developmental malformations and cancer. Here we review recent studies indicating that the interplay between transcription and genome conformation is a driving force for cell-fate decisions.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
https://www.nature.com/articles/s41586-019-1182-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:569:y:2019:i:7756:d:10.1038_s41586-019-1182-7
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-019-1182-7
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().