Mineral protection regulates long-term global preservation of natural organic carbon
Jordon D. Hemingway (),
Daniel H. Rothman,
Katherine E. Grant,
Sarah Z. Rosengard,
Timothy I. Eglinton,
Louis A. Derry and
Valier V. Galy
Additional contact information
Jordon D. Hemingway: Harvard University
Daniel H. Rothman: Massachusetts Institute of Technology
Katherine E. Grant: Cornell University
Sarah Z. Rosengard: University of British Columbia
Timothy I. Eglinton: ETH Zürich
Louis A. Derry: Cornell University
Valier V. Galy: Woods Hole Oceanographic Institution
Nature, 2019, vol. 570, issue 7760, 228-231
Abstract:
Abstract The balance between photosynthetic organic carbon production and respiration controls atmospheric composition and climate1,2. The majority of organic carbon is respired back to carbon dioxide in the biosphere, but a small fraction escapes remineralization and is preserved over geological timescales3. By removing reduced carbon from Earth’s surface, this sequestration process promotes atmospheric oxygen accumulation2 and carbon dioxide removal1. Two major mechanisms have been proposed to explain organic carbon preservation: selective preservation of biochemically unreactive compounds4,5 and protection resulting from interactions with a mineral matrix6,7. Although both mechanisms can operate across a range of environments and timescales, their global relative importance on 1,000-year to 100,000-year timescales remains uncertain4. Here we present a global dataset of the distributions of organic carbon activation energy and corresponding radiocarbon ages in soils, sediments and dissolved organic carbon. We find that activation energy distributions broaden over time in all mineral-containing samples. This result requires increasing bond-strength diversity, consistent with the formation of organo-mineral bonds8 but inconsistent with selective preservation. Radiocarbon ages further reveal that high-energy, mineral-bound organic carbon persists for millennia relative to low-energy, unbound organic carbon. Our results provide globally coherent evidence for the proposed7 importance of mineral protection in promoting organic carbon preservation. We suggest that similar studies of bond-strength diversity in ancient sediments may reveal how and why organic carbon preservation—and thus atmospheric composition and climate—has varied over geological time.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
https://www.nature.com/articles/s41586-019-1280-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:570:y:2019:i:7760:d:10.1038_s41586-019-1280-6
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-019-1280-6
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().