Giant thermal Hall conductivity in the pseudogap phase of cuprate superconductors
G. Grissonnanche (),
A. Legros,
S. Badoux,
E. Lefrançois,
V. Zatko,
M. Lizaire,
F. Laliberté,
A. Gourgout,
J.-S. Zhou,
S. Pyon,
T. Takayama,
H. Takagi,
S. Ono,
N. Doiron-Leyraud and
L. Taillefer ()
Additional contact information
G. Grissonnanche: Université de Sherbrooke, Sherbrooke
A. Legros: Université de Sherbrooke, Sherbrooke
S. Badoux: Université de Sherbrooke, Sherbrooke
E. Lefrançois: Université de Sherbrooke, Sherbrooke
V. Zatko: Université de Sherbrooke, Sherbrooke
M. Lizaire: Université de Sherbrooke, Sherbrooke
F. Laliberté: Université de Sherbrooke, Sherbrooke
A. Gourgout: Université de Sherbrooke, Sherbrooke
J.-S. Zhou: University of Texas at Austin
S. Pyon: University of Tokyo
T. Takayama: University of Tokyo
H. Takagi: University of Tokyo
S. Ono: Central Research Institute of Electric Power Industry
N. Doiron-Leyraud: Université de Sherbrooke, Sherbrooke
L. Taillefer: Université de Sherbrooke, Sherbrooke
Nature, 2019, vol. 571, issue 7765, 376-380
Abstract:
Abstract The nature of the pseudogap phase of the copper oxides (‘cuprates’) remains a puzzle. Although there are indications that this phase breaks various symmetries, there is no consensus on its fundamental nature1. Fermi-surface, transport and thermodynamic signatures of the pseudogap phase are reminiscent of a transition into a phase with antiferromagnetic order, but evidence for an associated long-range magnetic order is still lacking2. Here we report measurements of the thermal Hall conductivity (in the x–y plane, κxy) in the normal state of four different cuprates—La1.6−xNd0.4SrxCuO4, La1.8−xEu0.2SrxCuO4, La2−xSrxCuO4 and Bi2Sr2−xLaxCuO6+δ. We show that a large negative κxy signal is a property of the pseudogap phase, appearing at its critical hole doping, p*. It is also a property of the Mott insulator at p ≈ 0, where κxy has the largest reported magnitude of any insulator so far3. Because this negative κxy signal grows as the system becomes increasingly insulating electrically, it cannot be attributed to conventional mobile charge carriers. Nor is it due to magnons, because it exists in the absence of magnetic order. Our observation is reminiscent of the thermal Hall conductivity of insulators with spin-liquid states4–6, pointing to neutral excitations with spin chirality7 in the pseudogap phase of cuprates.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.nature.com/articles/s41586-019-1375-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:571:y:2019:i:7765:d:10.1038_s41586-019-1375-0
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-019-1375-0
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().