EconPapers    
Economics at your fingertips  
 

The formation of Jupiter’s diluted core by a giant impact

Shang-Fei Liu (), Yasunori Hori, Simon Müller, Xiaochen Zheng, Ravit Helled, Doug Lin and Andrea Isella
Additional contact information
Shang-Fei Liu: Sun Yat-sen University
Yasunori Hori: Astrobiology Center
Simon Müller: University of Zurich
Xiaochen Zheng: Tsinghua University
Ravit Helled: University of Zurich
Doug Lin: University of California, Santa Cruz
Andrea Isella: Rice University

Nature, 2019, vol. 572, issue 7769, 355-357

Abstract: Abstract The Juno mission1 has provided an accurate determination of Jupiter’s gravitational field2, which has been used to obtain information about the planet’s composition and internal structure. Several models of Jupiter’s structure that fit the probe’s data suggest that the planet has a diluted core, with a total heavy-element mass ranging from ten to a few tens of Earth masses (about 5 to 15 per cent of the Jovian mass), and that heavy elements (elements other than hydrogen and helium) are distributed within a region extending to nearly half of Jupiter’s radius3,4. Planet-formation models indicate that most heavy elements are accreted during the early stages of a planet's formation to create a relatively compact core5–7 and that almost no solids are accreted during subsequent runaway gas accretion8–10. Jupiter’s diluted core, combined with its possible high heavy-element enrichment, thus challenges standard planet-formation theory. A possible explanation is erosion of the initially compact heavy-element core, but the efficiency of such erosion is uncertain and depends on both the immiscibility of heavy materials in metallic hydrogen and on convective mixing as the planet evolves11,12. Another mechanism that can explain this structure is planetesimal enrichment and vaporization13–15 during the formation process, although relevant models typically cannot produce an extended diluted core. Here we show that a sufficiently energetic head-on collision (giant impact) between a large planetary embryo and the proto-Jupiter could have shattered its primordial compact core and mixed the heavy elements with the inner envelope. Models of such a scenario lead to an internal structure that is consistent with a diluted core, persisting over billions of years. We suggest that collisions were common in the young Solar system and that a similar event may have also occurred for Saturn, contributing to the structural differences between Jupiter and Saturn16–18.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41586-019-1470-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:572:y:2019:i:7769:d:10.1038_s41586-019-1470-2

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-019-1470-2

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:572:y:2019:i:7769:d:10.1038_s41586-019-1470-2