Challenges in evidencing the earliest traces of life
Emmanuelle J. Javaux ()
Additional contact information
Emmanuelle J. Javaux: University of Liège
Nature, 2019, vol. 572, issue 7770, 451-460
Abstract:
Abstract Earth has been habitable for 4.3 billion years, and the earliest rock record indicates the presence of a microbial biosphere by at least 3.4 billion years ago—and disputably earlier. Possible traces of life can be morphological or chemical but abiotic processes that mimic or alter them, or subsequent contamination, may challenge their interpretation. Advances in micro- and nanoscale analyses, as well as experimental approaches, are improving the characterization of these biosignatures and constraining abiotic processes, when combined with the geological context. Reassessing the evidence of early life is challenging, but essential and timely in the quest to understand the origin and evolution of life, both on Earth and beyond.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41586-019-1436-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:572:y:2019:i:7770:d:10.1038_s41586-019-1436-4
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-019-1436-4
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().