EconPapers    
Economics at your fingertips  
 

Ionic-surfactant-mediated electro-dewetting for digital microfluidics

Jia Li, Noel S. Ha, Tingyi ‘Leo’ Liu, R. Michael Dam and Chang-Jin ‘CJ’ Kim ()
Additional contact information
Jia Li: University of California, Los Angeles (UCLA)
Noel S. Ha: University of California, Los Angeles (UCLA)
Tingyi ‘Leo’ Liu: University of California, Los Angeles (UCLA)
R. Michael Dam: University of California, Los Angeles (UCLA)
Chang-Jin ‘CJ’ Kim: University of California, Los Angeles (UCLA)

Nature, 2019, vol. 572, issue 7770, 507-510

Abstract: Abstract The ability to manipulate droplets on a substrate using electric signals1—known as digital microfluidics—is used in optical2,3, biomedical4,5, thermal6 and electronic7 applications and has led to commercially available liquid lenses8 and diagnostics kits9,10. Such electrical actuation is mainly achieved by electrowetting, with droplets attracted towards and spreading on a conductive substrate in response to an applied voltage. To ensure strong and practical actuation, the substrate is covered with a dielectric layer and a hydrophobic topcoat for electrowetting-on-dielectric (EWOD)11-13; this increases the actuation voltage (to about 100 volts) and can compromise reliability owing to dielectric breakdown14, electric charging15 and biofouling16. Here we demonstrate droplet manipulation that uses electrical signals to induce the liquid to dewet, rather than wet, a hydrophilic conductive substrate without the need for added layers. In this electrodewetting mechanism, which is phenomenologically opposite to electrowetting, the liquid–substrate interaction is not controlled directly by electric field but instead by field-induced attachment and detachment of ionic surfactants to the substrate. We show that this actuation mechanism can perform all the basic fluidic operations of digital microfluidics using water on doped silicon wafers in air, with only ±2.5 volts of driving voltage, a few microamperes of current and about 0.015 times the critical micelle concentration of an ionic surfactant. The system can also handle common buffers and organic solvents, promising a simple and reliable microfluidic platform for a broad range of applications.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41586-019-1491-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:572:y:2019:i:7770:d:10.1038_s41586-019-1491-x

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-019-1491-x

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:572:y:2019:i:7770:d:10.1038_s41586-019-1491-x