EconPapers    
Economics at your fingertips  
 

Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis

Kim Newton (), Katherine E. Wickliffe, Debra L. Dugger, Allie Maltzman, Merone Roose-Girma, Monika Dohse, László Kőműves, Joshua D. Webster and Vishva M. Dixit ()
Additional contact information
Kim Newton: Genentech
Katherine E. Wickliffe: Genentech
Debra L. Dugger: Genentech
Allie Maltzman: Genentech
Merone Roose-Girma: Genentech
Monika Dohse: Genentech
László Kőműves: Genentech
Joshua D. Webster: Genentech
Vishva M. Dixit: Genentech

Nature, 2019, vol. 574, issue 7778, 428-431

Abstract: Abstract The aspartate-specific cysteine protease caspase-8 suppresses necroptotic cell death mediated by RIPK3 and MLKL. Indeed, mice that lack caspase-8 die in a RIPK3- and MLKL-dependent manner during embryogenesis1–3. In humans, caspase-8 deficiency is associated with immunodeficiency4 or very early onset inflammatory bowel disease5. The substrates that are cleaved by caspase-8 to prevent necroptosis in vivo have not been defined. Here we show that knock-in mice that express catalytically inactive caspase-8(C362A) die as embryos owing to MLKL-dependent necroptosis, similar to caspase-8-deficient mice. Thus, caspase-8 must cleave itself, other proteins or both to inhibit necroptosis. Mice that express caspase-8(D212A/D218A/D225A/D387A), which cannot cleave itself, were viable, as were mice that express c-FLIP or CYLD proteins that had been mutated to prevent cleavage by caspase-8. By contrast, mice that express RIPK1(D325A), in which the caspase-8 cleavage site Asp325 had been mutated, died mid-gestation. Embryonic lethality was prevented by inactivation of RIPK1, loss of TNFR1, or loss of both MLKL and the caspase-8 adaptor FADD, but not by loss of MLKL alone. Thus, RIPK1(D325A) appears to trigger cell death mediated by TNF, the kinase activity of RIPK1 and FADD–caspase-8. Accordingly, dying endothelial cells that contain cleaved caspase-3 were abnormally abundant in yolk sacs of Ripk1D325A/D325A embryos. Heterozygous Ripk1D325A/+ cells and mice were viable, but were also more susceptible to TNF-induced cell death than were wild-type cells or mice. Our data show that Asp325 of RIPK1 is essential for limiting aberrant cell death in response to TNF, consistent with the idea that cleavage of RIPK1 by caspase-8 is a mechanism for dismantling death-inducing complexes.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41586-019-1548-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:574:y:2019:i:7778:d:10.1038_s41586-019-1548-x

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-019-1548-x

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:574:y:2019:i:7778:d:10.1038_s41586-019-1548-x