EconPapers    
Economics at your fingertips  
 

Seeing mesoatomic distortions in soft-matter crystals of a double-gyroid block copolymer

Xueyan Feng, Christopher J. Burke, Mujin Zhuo, Hua Guo, Kaiqi Yang, Abhiram Reddy, Ishan Prasad, Rong-Ming Ho, Apostolos Avgeropoulos, Gregory M. Grason () and Edwin L. Thomas ()
Additional contact information
Xueyan Feng: Rice University
Christopher J. Burke: University of Massachusetts
Mujin Zhuo: Rice University
Hua Guo: Rice University
Kaiqi Yang: Rice University
Abhiram Reddy: University of Massachusetts
Ishan Prasad: University of Massachusetts
Rong-Ming Ho: National Tsing Hua University
Apostolos Avgeropoulos: University of Ioannina, University Campus Dourouti
Gregory M. Grason: University of Massachusetts
Edwin L. Thomas: Rice University

Nature, 2019, vol. 575, issue 7781, 175-179

Abstract: Abstract Supramolecular soft crystals are periodic structures that are formed by the hierarchical assembly of complex constituents, and occur in a broad variety of ‘soft-matter’ systems1. Such soft crystals exhibit many of the basic features (such as three-dimensional lattices and space groups) and properties (such as band structure and wave propagation) of their ‘hard-matter’ atomic solid counterparts, owing to the generic symmetry-based principles that underlie both2,3. ‘Mesoatomic’ building blocks of soft-matter crystals consist of groups of molecules, whose sub-unit-cell configurations couple strongly to supra-unit-scale symmetry. As yet, high-fidelity experimental techniques for characterizing the detailed local structure of soft matter and, in particular, for quantifying the effects of multiscale reconfigurability are quite limited. Here, by applying slice-and-view microscopy to reconstruct the micrometre-scale domain morphology of a solution-cast block copolymer double gyroid over large specimen volumes, we unambiguously characterize its supra-unit and sub-unit cell morphology. Our multiscale analysis reveals a qualitative and underappreciated distinction between this double-gyroid soft crystal and hard crystals in terms of their structural relaxations in response to forces—namely a non-affine mode of sub-unit-cell symmetry breaking that is coherently maintained over large multicell dimensions. Subject to inevitable stresses during crystal growth, the relatively soft strut lengths and diameters of the double-gyroid network can easily accommodate deformation, while the angular geometry is stiff, maintaining local correlations even under strong symmetry-breaking distortions. These features contrast sharply with the rigid lengths and bendable angles of hard crystals.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41586-019-1706-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:575:y:2019:i:7781:d:10.1038_s41586-019-1706-1

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-019-1706-1

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:575:y:2019:i:7781:d:10.1038_s41586-019-1706-1