EconPapers    
Economics at your fingertips  
 

Quantifying the dynamics of failure across science, startups and security

Yian Yin, Yang Wang, James A. Evans and Dashun Wang ()
Additional contact information
Yian Yin: Northwestern University
Yang Wang: Northwestern University
James A. Evans: University of Chicago
Dashun Wang: Northwestern University

Nature, 2019, vol. 575, issue 7781, 190-194

Abstract: Abstract Human achievements are often preceded by repeated attempts that fail, but little is known about the mechanisms that govern the dynamics of failure. Here, building on previous research relating to innovation1–7, human dynamics8–11 and learning12–17, we develop a simple one-parameter model that mimics how successful future attempts build on past efforts. Solving this model analytically suggests that a phase transition separates the dynamics of failure into regions of progression or stagnation and predicts that, near the critical threshold, agents who share similar characteristics and learning strategies may experience fundamentally different outcomes following failures. Above the critical point, agents exploit incremental refinements to systematically advance towards success, whereas below it, they explore disjoint opportunities without a pattern of improvement. The model makes several empirically testable predictions, demonstrating that those who eventually succeed and those who do not may initially appear similar, but can be characterized by fundamentally distinct failure dynamics in terms of the efficiency and quality associated with each subsequent attempt. We collected large-scale data from three disparate domains and traced repeated attempts by investigators to obtain National Institutes of Health (NIH) grants to fund their research, innovators to successfully exit their startup ventures, and terrorist organizations to claim casualties in violent attacks. We find broadly consistent empirical support across all three domains, which systematically verifies each prediction of our model. Together, our findings unveil detectable yet previously unknown early signals that enable us to identify failure dynamics that will lead to ultimate success or failure. Given the ubiquitous nature of failure and the paucity of quantitative approaches to understand it, these results represent an initial step towards the deeper understanding of the complex dynamics underlying failure.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
https://www.nature.com/articles/s41586-019-1725-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:575:y:2019:i:7781:d:10.1038_s41586-019-1725-y

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-019-1725-y

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:575:y:2019:i:7781:d:10.1038_s41586-019-1725-y