Controlled flight of a microrobot powered by soft artificial muscles
Yufeng Chen (),
Huichan Zhao,
Jie Mao,
Pakpong Chirarattananon,
E. Farrell Helbling,
Nak-seung Patrick Hyun,
David R. Clarke and
Robert J. Wood ()
Additional contact information
Yufeng Chen: Harvard University
Huichan Zhao: Tsinghua University
Jie Mao: Harvard University
Pakpong Chirarattananon: City University of Hong Kong
E. Farrell Helbling: Harvard University
Nak-seung Patrick Hyun: Harvard University
David R. Clarke: Harvard University
Robert J. Wood: Harvard University
Nature, 2019, vol. 575, issue 7782, 324-329
Abstract:
Abstract Flying insects capable of navigating in highly cluttered natural environments can withstand in-flight collisions because of the combination of their low inertia1 and the resilience of their wings2, exoskeletons1 and muscles. Current insect-scale (less than ten centimetres long and weighing less than five grams) aerial robots3–6 use rigid microscale actuators, which are typically fragile under external impact. Biomimetic artificial muscles7–10 that are capable of large deformation offer a promising alternative for actuation because they can endure the stresses caused by such impacts. However, existing soft actuators11–13 have not yet demonstrated sufficient power density to achieve lift-off, and their actuation nonlinearity and limited bandwidth create further challenges for achieving closed-loop (driven by an input control signal that is adjusted based on sensory feedback) flight control. Here we develop heavier-than-air aerial robots powered by soft artificial muscles that demonstrate open-loop (driven by a predetermined signal without feedback), passively stable (upright during flight) ascending flight as well as closed-loop, hovering flight. The robots are driven by multi-layered dielectric elastomer actuators that weigh 100 milligrams each and have a resonance frequency of 500 hertz and power density of 600 watts per kilogram. To increase the mechanical power output of the actuator and to demonstrate flight control, we present ways to overcome challenges unique to soft actuators, such as nonlinear transduction and dynamic buckling. These robots can sense and withstand collisions with surrounding obstacles and can recover from in-flight collisions by exploiting material robustness and vehicle passive stability. We also fly two micro-aerial vehicles simultaneously in a cluttered environment. They collide with the wall and each other without suffering damage. These robots rely on offboard amplifiers and an external motion-capture system to provide power to the dielectric elastomer actuators and to control their flight. Our work demonstrates how soft actuators can achieve sufficient power density and bandwidth to enable controlled flight, illustrating the potential of developing next-generation agile soft robots.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.nature.com/articles/s41586-019-1737-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:575:y:2019:i:7782:d:10.1038_s41586-019-1737-7
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-019-1737-7
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().