EconPapers    
Economics at your fingertips  
 

Large hydropower and water-storage potential in future glacier-free basins

Daniel Farinotti (), Vanessa Round, Matthias Huss, Loris Compagno and Harry Zekollari
Additional contact information
Daniel Farinotti: Hydrology and Glaciology (VAW), ETH Zurich
Vanessa Round: Hydrology and Glaciology (VAW), ETH Zurich
Matthias Huss: Hydrology and Glaciology (VAW), ETH Zurich
Loris Compagno: Hydrology and Glaciology (VAW), ETH Zurich
Harry Zekollari: Hydrology and Glaciology (VAW), ETH Zurich

Nature, 2019, vol. 575, issue 7782, 341-344

Abstract: Abstract Climate change is causing widespread glacier retreat1, and much attention is devoted to negative impacts such as diminishing water resources2, shifts in runoff seasonality3, and increases in cryosphere-related hazards4. Here we focus on a different aspect, and explore the water-storage and hydropower potential of areas that are expected to become ice-free during the course of this century. For roughly 185,000 sites that are glacierized at present, we predict the potentially emerging reservoir storage volume and hydropower potential. Using a climate-driven glacier-evolution model5 and topographical analysis6, we estimate a theoretical maximal total storage and hydropower potential of 875 ± 260 cubic kilometres and 1,355 ± 515 terawatt-hours per year, respectively (95% confidence intervals). A first-order suitability assessment that takes into account environmental, technical and economic factors identifies roughly 40 per cent of this potential (355 ± 105 cubic kilometres and 533 ± 200 terawatt-hours per year) as possibly being suitable for realization. Three quarters of the potential storage volume is expected to become ice-free by 2050, and the storage volume would be enough to retain about half of the annual runoff leaving the investigated sites. Although local impacts would need to be assessed on a case-by-case basis, the results indicate that deglacierizing basins could make important contributions to national energy supplies in several countries, particularly in High Mountain Asia.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
https://www.nature.com/articles/s41586-019-1740-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:575:y:2019:i:7782:d:10.1038_s41586-019-1740-z

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-019-1740-z

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:575:y:2019:i:7782:d:10.1038_s41586-019-1740-z