EconPapers    
Economics at your fingertips  
 

Imaging work and dissipation in the quantum Hall state in graphene

A. Marguerite, J. Birkbeck, A. Aharon-Steinberg, D. Halbertal, K. Bagani, I. Marcus, Y. Myasoedov, A. K. Geim, D. J. Perello () and E. Zeldov ()
Additional contact information
A. Marguerite: Weizmann Institute of Science
J. Birkbeck: The University of Manchester
A. Aharon-Steinberg: Weizmann Institute of Science
D. Halbertal: Weizmann Institute of Science
K. Bagani: Weizmann Institute of Science
I. Marcus: Weizmann Institute of Science
Y. Myasoedov: Weizmann Institute of Science
A. K. Geim: The University of Manchester
D. J. Perello: The University of Manchester
E. Zeldov: Weizmann Institute of Science

Nature, 2019, vol. 575, issue 7784, 628-633

Abstract: Abstract Topology is a powerful recent concept asserting that quantum states could be globally protected against local perturbations1,2. Dissipationless topologically protected states are therefore of major fundamental interest as well as of practical importance in metrology and quantum information technology. Although topological protection can be robust theoretically, in realistic devices it is often susceptible to various dissipative mechanisms, which are difficult to study directly because of their microscopic origins. Here we use scanning nanothermometry3 to visualize and investigate the microscopic mechanisms that undermine dissipationless transport in the quantum Hall state in graphene. Simultaneous nanoscale thermal and scanning gate microscopy shows that the dissipation is governed by crosstalk between counterpropagating pairs of downstream and upstream channels that appear at graphene boundaries as a result of edge reconstruction. Instead of local Joule heating, however, the dissipation mechanism comprises two distinct and spatially separated processes. The work-generating process that we image directly, which involves elastic tunnelling of charge carriers between the quantum channels, determines the transport properties but does not generate local heat. By contrast, the heat and entropy generation process—which we visualize independently—occurs nonlocally upon resonant inelastic scattering from single atomic defects at graphene edges, and does not affect transport. Our findings provide an insight into the mechanisms that conceal the true topological protection, and suggest routes towards engineering more robust quantum states for device applications.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41586-019-1704-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:575:y:2019:i:7784:d:10.1038_s41586-019-1704-3

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-019-1704-3

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:575:y:2019:i:7784:d:10.1038_s41586-019-1704-3