Thermoelectric performance of a metastable thin-film Heusler alloy
B. Hinterleitner,
I. Knapp,
M. Poneder,
Yongpeng Shi,
H. Müller,
G. Eguchi,
C. Eisenmenger-Sittner,
M. Stöger-Pollach,
Y. Kakefuda,
N. Kawamoto,
Q. Guo,
T. Baba,
T. Mori,
Sami Ullah,
Xing-Qiu Chen and
E. Bauer ()
Additional contact information
B. Hinterleitner: Technische Universität Wien
I. Knapp: Technische Universität Wien
M. Poneder: Technische Universität Wien
Yongpeng Shi: Institute of Metal Research, Chinese Academy of Sciences
H. Müller: Technische Universität Wien
G. Eguchi: Technische Universität Wien
C. Eisenmenger-Sittner: Technische Universität Wien
M. Stöger-Pollach: Technische Universität Wien
Y. Kakefuda: National Institute for Materials Science (NIMS)
N. Kawamoto: National Institute for Materials Science (NIMS)
Q. Guo: National Institute for Materials Science (NIMS)
T. Baba: National Institute for Materials Science (NIMS)
T. Mori: National Institute for Materials Science (NIMS)
Sami Ullah: Institute of Metal Research, Chinese Academy of Sciences
Xing-Qiu Chen: Institute of Metal Research, Chinese Academy of Sciences
E. Bauer: Technische Universität Wien
Nature, 2019, vol. 576, issue 7785, 85-90
Abstract:
Abstract Thermoelectric materials transform a thermal gradient into electricity. The efficiency of this process relies on three material-dependent parameters: the Seebeck coefficient, the electrical resistivity and the thermal conductivity, summarized in the thermoelectric figure of merit. A large figure of merit is beneficial for potential applications such as thermoelectric generators. Here we report the thermal and electronic properties of thin-film Heusler alloys based on Fe2V0.8W0.2Al prepared by magnetron sputtering. Density functional theory calculations suggest that the thin films are metastable states, and measurements of the power factor—the ratio of the Seebeck coefficient squared divided by the electrical resistivity—suggest a high intrinsic figure of merit for these thin films. This may arise from a large differential density of states at the Fermi level and a Weyl-like electron dispersion close to the Fermi level, which indicates a high mobility of charge carriers owing to linear crossing in the electronic bands.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://www.nature.com/articles/s41586-019-1751-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:576:y:2019:i:7785:d:10.1038_s41586-019-1751-9
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-019-1751-9
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().