EconPapers    
Economics at your fingertips  
 

Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures

Eunice Y. Paik, Long Zhang, G. William Burg, Rahul Gogna, Emanuel Tutuc and Hui Deng ()
Additional contact information
Eunice Y. Paik: University of Michigan
Long Zhang: University of Michigan
G. William Burg: The University of Texas at Austin
Rahul Gogna: University of Michigan
Emanuel Tutuc: The University of Texas at Austin
Hui Deng: University of Michigan

Nature, 2019, vol. 576, issue 7785, 80-84

Abstract: Abstract Two-dimensional semiconductors have emerged as a new class of materials for nanophotonics owing to their strong exciton–photon interaction1,2 and their ability to be engineered and integrated into devices3. Here we take advantage of these properties to engineer an efficient lasing medium based on direct-bandgap interlayer excitons in rotationally aligned atomically thin heterostructures4. Lasing is measured from a transition-metal dichalcogenide heterobilayer (WSe2–MoSe2) integrated in a silicon nitride grating resonator. An abrupt increase in the spatial coherence of the emission is observed across the lasing threshold. The work establishes interlayer excitons in two-dimensional heterostructures as a gain medium with spatially coherent lasing emission and potential for heterogeneous integration. With electrically tunable exciton–photon interaction strengths5 and long-range dipolar interactions, these interlayer excitons are promising for application as low-power, ultrafast lasers and modulators and for the study of many-body quantum phenomena6.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
https://www.nature.com/articles/s41586-019-1779-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:576:y:2019:i:7785:d:10.1038_s41586-019-1779-x

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-019-1779-x

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:576:y:2019:i:7785:d:10.1038_s41586-019-1779-x