Upper-plate rigidity determines depth-varying rupture behaviour of megathrust earthquakes
Valentí Sallarès () and
César R. Ranero
Additional contact information
Valentí Sallarès: Barcelona Center for Subsurface Imaging, Institute of Marine Sciences, CSIC
César R. Ranero: Barcelona Center for Subsurface Imaging, Institute of Marine Sciences, CSIC
Nature, 2019, vol. 576, issue 7785, 96-101
Abstract:
Abstract Seismological data provide evidence of a depth-dependent rupture behaviour of earthquakes occurring at the megathrust fault of subduction zones, also known as megathrust earthquakes1. Relative to deeper events of similar magnitude, shallow earthquake ruptures have larger slip and longer duration, radiate energy that is depleted in high frequencies and have a larger discrepancy between their surface-wave and moment magnitudes1–3. These source properties make them prone to generating devastating tsunamis without clear warning signs. The depth-dependent rupture behaviour is usually attributed to variations in fault mechanics4–7. Conceptual models, however, have so far failed to identify the fundamental physical causes of the contrasting observations and do not provide a quantitative framework with which to predict and link them. Here we demonstrate that the observed differences do not require changes in fault mechanics. We use compressional-wave velocity models from worldwide subduction zones to show that their common underlying cause is a systematic depth variation of the rigidity at the lower part of the upper plate — the rock body overriding the megathrust fault, which deforms by dynamic stress transfer during co-seismic slip. Combining realistic elastic properties with accurate estimates of earthquake focal depth enables us to predict the amount of co-seismic slip (the fault motion at the instant of the earthquake), provides unambiguous estimations of magnitude and offers the potential for early tsunami warnings.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41586-019-1784-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:576:y:2019:i:7785:d:10.1038_s41586-019-1784-0
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-019-1784-0
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().