EconPapers    
Economics at your fingertips  
 

Phonon heat transfer across a vacuum through quantum fluctuations

King Yan Fong, Hao-Kun Li, Rongkuo Zhao, Sui Yang, Yuan Wang and Xiang Zhang ()
Additional contact information
King Yan Fong: University of California
Hao-Kun Li: University of California
Rongkuo Zhao: University of California
Sui Yang: University of California
Yuan Wang: University of California
Xiang Zhang: University of California

Nature, 2019, vol. 576, issue 7786, 243-247

Abstract: Abstract Heat transfer in solids is typically conducted through either electrons or atomic vibrations known as phonons. In a vacuum, heat has long been thought to be transferred by radiation but not by phonons because of the lack of a medium1. Recent theory, however, has predicted that quantum fluctuations of electromagnetic fields could induce phonon coupling across a vacuum and thereby facilitate heat transfer2–4. Revealing this unique quantum effect experimentally would bring fundamental insights to quantum thermodynamics5 and practical implications to thermal management in nanometre-scale technologies6. Here we experimentally demonstrate heat transfer induced by quantum fluctuations between two objects separated by a vacuum gap. We use nanomechanical systems to realize strong phonon coupling through vacuum fluctuations, and observe the exchange of thermal energy between individual phonon modes. The experimental observation agrees well with our theoretical calculations and is unambiguously distinguished from other effects such as near-field radiation and electrostatic interaction. Our discovery of phonon transport through quantum fluctuations represents a previously unknown mechanism of heat transfer in addition to the conventional conduction, convection and radiation. It paves the way for the exploitation of quantum vacuum in energy transport at the nanoscale.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41586-019-1800-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:576:y:2019:i:7786:d:10.1038_s41586-019-1800-4

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-019-1800-4

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:576:y:2019:i:7786:d:10.1038_s41586-019-1800-4