A general theoretical and experimental framework for nanoscale electromagnetism
Yi Yang (),
Di Zhu (),
Wei Yan,
Akshay Agarwal,
Mengjie Zheng,
John D. Joannopoulos,
Philippe Lalanne,
Thomas Christensen (),
Karl K. Berggren and
Marin Soljačić
Additional contact information
Yi Yang: Massachusetts Institute of Technology
Di Zhu: Massachusetts Institute of Technology
Wei Yan: Université Bordeaux, CNRS
Akshay Agarwal: Massachusetts Institute of Technology
Mengjie Zheng: Massachusetts Institute of Technology
John D. Joannopoulos: Massachusetts Institute of Technology
Philippe Lalanne: Université Bordeaux, CNRS
Thomas Christensen: Massachusetts Institute of Technology
Karl K. Berggren: Massachusetts Institute of Technology
Marin Soljačić: Massachusetts Institute of Technology
Nature, 2019, vol. 576, issue 7786, 248-252
Abstract:
Abstract The macroscopic electromagnetic boundary conditions, which have been established for over a century1, are essential for the understanding of photonics at macroscopic length scales. Even state-of-the-art nanoplasmonic studies2–4, exemplars of extremely interface-localized fields, rely on their validity. This classical description, however, neglects the intrinsic electronic length scales (of the order of ångström) associated with interfaces, leading to considerable discrepancies between classical predictions and experimental observations in systems with deeply nanoscale feature sizes, which are typically evident below about 10 to 20 nanometres5–10. The onset of these discrepancies has a mesoscopic character: it lies between the granular microscopic (electronic-scale) and continuous macroscopic (wavelength-scale) domains. Existing top-down phenomenological approaches deal only with individual aspects of these omissions, such as nonlocality11–13 and local-response spill-out14,15. Alternatively, bottom-up first-principles approaches—for example, time-dependent density functional theory16,17—are severely constrained by computational demands and thus become impractical for multiscale problems. Consequently, a general and unified framework for nanoscale electromagnetism remains absent. Here we introduce and experimentally demonstrate such a framework—amenable to both analytics and numerics, and applicable to multiscale problems—that reintroduces the electronic length scale via surface-response functions known as Feibelman d parameters18,19. We establish an experimental procedure to measure these complex dispersive surface-response functions, using quasi-normal-mode perturbation theory and observations of pronounced nonclassical effects. We observe nonclassical spectral shifts in excess of 30 per cent and the breakdown of Kreibig-like broadening in a quintessential multiscale architecture: film-coupled nanoresonators, with feature sizes comparable to both the wavelength and the electronic length scale. Our results provide a general framework for modelling and understanding nanoscale (that is, all relevant length scales above about 1 nanometre) electromagnetic phenomena.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41586-019-1803-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:576:y:2019:i:7786:d:10.1038_s41586-019-1803-1
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-019-1803-1
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().