Plasma membrane V-ATPase controls oncogenic RAS-induced macropinocytosis
Craig Ramirez,
Andrew D. Hauser,
Emily A. Vucic and
Dafna Bar-Sagi ()
Additional contact information
Craig Ramirez: New York University School of Medicine
Andrew D. Hauser: New York University School of Medicine
Emily A. Vucic: New York University School of Medicine
Dafna Bar-Sagi: New York University School of Medicine
Nature, 2019, vol. 576, issue 7787, 477-481
Abstract:
Abstract Oncogenic activation of RAS is associated with the acquisition of a unique set of metabolic dependencies that contribute to tumour cell fitness. Cells that express oncogenic RAS are able to internalize and degrade extracellular protein via a fluid-phase uptake mechanism termed macropinocytosis1. There is increasing recognition of the role of this RAS-dependent process in the generation of free amino acids that can be used to support tumour cell growth under nutrient-limiting conditions2. However, little is known about the molecular steps that mediate the induction of macropinocytosis by oncogenic RAS. Here we identify vacuolar ATPase (V-ATPase) as an essential regulator of RAS-induced macropinocytosis. Oncogenic RAS promotes the translocation of V-ATPase from intracellular membranes to the plasma membrane via a pathway that requires the activation of protein kinase A by a bicarbonate-dependent soluble adenylate cyclase. Accumulation of V-ATPase at the plasma membrane is necessary for the cholesterol-dependent plasma-membrane association of RAC1, a prerequisite for the stimulation of membrane ruffling and macropinocytosis. These observations establish a link between V-ATPase trafficking and nutrient supply by macropinocytosis that could be exploited to curtail the metabolic adaptation capacity of RAS-mutant tumour cells.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/s41586-019-1831-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:576:y:2019:i:7787:d:10.1038_s41586-019-1831-x
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-019-1831-x
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().