Prediction and observation of an antiferromagnetic topological insulator
M. M. Otrokov (),
I. I. Klimovskikh,
H. Bentmann,
D. Estyunin,
A. Zeugner,
Z. S. Aliev,
S. Gaß,
A. U. B. Wolter,
A. V. Koroleva,
A. M. Shikin,
M. Blanco-Rey,
M. Hoffmann,
I. P. Rusinov,
A. Yu. Vyazovskaya,
S. V. Eremeev,
Yu. M. Koroteev,
V. M. Kuznetsov,
F. Freyse,
J. Sánchez-Barriga,
I. R. Amiraslanov,
M. B. Babanly,
N. T. Mamedov,
N. A. Abdullayev,
V. N. Zverev,
A. Alfonsov,
V. Kataev,
B. Büchner,
E. F. Schwier,
S. Kumar,
A. Kimura,
L. Petaccia,
G. Santo,
R. C. Vidal,
S. Schatz,
K. Kißner,
M. Ünzelmann,
C. H. Min,
Simon Moser,
T. R. F. Peixoto,
F. Reinert,
A. Ernst,
P. M. Echenique,
A. Isaeva and
E. V. Chulkov ()
Additional contact information
M. M. Otrokov: Centro Mixto CSIC-UPV/EHU
I. I. Klimovskikh: Saint Petersburg State University
H. Bentmann: Universität Würzburg
D. Estyunin: Saint Petersburg State University
A. Zeugner: Technische Universität Dresden
Z. S. Aliev: Azerbaijan National Academy of Sciences
S. Gaß: Institute for Solid State Research, Leibniz IFW Dresden
A. U. B. Wolter: Institute for Solid State Research, Leibniz IFW Dresden
A. V. Koroleva: Saint Petersburg State University
A. M. Shikin: Saint Petersburg State University
M. Blanco-Rey: Donostia International Physics Center (DIPC)
M. Hoffmann: Johannes Kepler Universität
I. P. Rusinov: Saint Petersburg State University
A. Yu. Vyazovskaya: Saint Petersburg State University
S. V. Eremeev: Saint Petersburg State University
Yu. M. Koroteev: Tomsk State University
V. M. Kuznetsov: Tomsk State University
F. Freyse: Helmholtz-Zentrum Berlin für Materialien und Energie
J. Sánchez-Barriga: Helmholtz-Zentrum Berlin für Materialien und Energie
I. R. Amiraslanov: Azerbaijan National Academy of Sciences
M. B. Babanly: Azerbaijan National Academy of Science
N. T. Mamedov: Azerbaijan National Academy of Sciences
N. A. Abdullayev: Azerbaijan National Academy of Sciences
V. N. Zverev: Russian Academy of Sciences
A. Alfonsov: Institute for Solid State Research, Leibniz IFW Dresden
V. Kataev: Institute for Solid State Research, Leibniz IFW Dresden
B. Büchner: Institute for Solid State Research, Leibniz IFW Dresden
E. F. Schwier: Hiroshima University
S. Kumar: Hiroshima University
A. Kimura: Hiroshima University
L. Petaccia: Elettra Sincrotrone Trieste
G. Santo: Elettra Sincrotrone Trieste
R. C. Vidal: Universität Würzburg
S. Schatz: Universität Würzburg
K. Kißner: Universität Würzburg
M. Ünzelmann: Universität Würzburg
C. H. Min: Universität Würzburg
Simon Moser: Lawrence Berkeley National Laboratory
T. R. F. Peixoto: Universität Würzburg
F. Reinert: Universität Würzburg
A. Ernst: Johannes Kepler Universität
P. M. Echenique: Centro Mixto CSIC-UPV/EHU
A. Isaeva: Institute for Solid State Research, Leibniz IFW Dresden
E. V. Chulkov: Centro Mixto CSIC-UPV/EHU
Nature, 2019, vol. 576, issue 7787, 416-422
Abstract:
Abstract Magnetic topological insulators are narrow-gap semiconductor materials that combine non-trivial band topology and magnetic order1. Unlike their nonmagnetic counterparts, magnetic topological insulators may have some of the surfaces gapped, which enables a number of exotic phenomena that have potential applications in spintronics1, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3. So far, magnetic topological insulators have only been created by means of doping nonmagnetic topological insulators with 3d transition-metal elements; however, such an approach leads to strongly inhomogeneous magnetic4 and electronic5 properties of these materials, restricting the observation of important effects to very low temperatures2,3. An intrinsic magnetic topological insulator—a stoichiometric well ordered magnetic compound—could be an ideal solution to these problems, but no such material has been observed so far. Here we predict by ab initio calculations and further confirm using various experimental techniques the realization of an antiferromagnetic topological insulator in the layered van der Waals compound MnBi2Te4. The antiferromagnetic ordering that MnBi2Te4 shows makes it invariant with respect to the combination of the time-reversal and primitive-lattice translation symmetries, giving rise to a ℤ2 topological classification; ℤ2 = 1 for MnBi2Te4, confirming its topologically nontrivial nature. Our experiments indicate that the symmetry-breaking (0001) surface of MnBi2Te4 exhibits a large bandgap in the topological surface state. We expect this property to eventually enable the observation of a number of fundamental phenomena, among them quantized magnetoelectric coupling6–8 and axion electrodynamics9,10. Other exotic phenomena could become accessible at much higher temperatures than those reached so far, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
https://www.nature.com/articles/s41586-019-1840-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:576:y:2019:i:7787:d:10.1038_s41586-019-1840-9
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-019-1840-9
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().