Field-resolved infrared spectroscopy of biological systems
Ioachim Pupeza (),
Marinus Huber,
Michael Trubetskov,
Wolfgang Schweinberger,
Syed A. Hussain,
Christina Hofer,
Kilian Fritsch,
Markus Poetzlberger,
Lenard Vamos,
Ernst Fill,
Tatiana Amotchkina,
Kosmas V. Kepesidis,
Alexander Apolonski,
Nicholas Karpowicz,
Vladimir Pervak,
Oleg Pronin,
Frank Fleischmann,
Abdallah Azzeer,
Mihaela Žigman and
Ferenc Krausz ()
Additional contact information
Ioachim Pupeza: Ludwig Maximilians University München
Marinus Huber: Ludwig Maximilians University München
Michael Trubetskov: Max Planck Institute of Quantum Optics
Wolfgang Schweinberger: Ludwig Maximilians University München
Syed A. Hussain: Ludwig Maximilians University München
Christina Hofer: Ludwig Maximilians University München
Kilian Fritsch: Ludwig Maximilians University München
Markus Poetzlberger: Max Planck Institute of Quantum Optics
Lenard Vamos: Max Planck Institute of Quantum Optics
Ernst Fill: Ludwig Maximilians University München
Tatiana Amotchkina: Ludwig Maximilians University München
Kosmas V. Kepesidis: Ludwig Maximilians University München
Alexander Apolonski: Ludwig Maximilians University München
Nicholas Karpowicz: Max Planck Institute of Quantum Optics
Vladimir Pervak: Ludwig Maximilians University München
Oleg Pronin: Ludwig Maximilians University München
Frank Fleischmann: Max Planck Institute of Quantum Optics
Abdallah Azzeer: King Saud University, Department of Physics and Astronomy
Mihaela Žigman: Ludwig Maximilians University München
Ferenc Krausz: Ludwig Maximilians University München
Nature, 2020, vol. 577, issue 7788, 52-59
Abstract:
Abstract The proper functioning of living systems and physiological phenotypes depends on molecular composition. Yet simultaneous quantitative detection of a wide variety of molecules remains a challenge1–8. Here we show how broadband optical coherence opens up opportunities for fingerprinting complex molecular ensembles in their natural environment. Vibrationally excited molecules emit a coherent electric field following few-cycle infrared laser excitation9–12, and this field is specific to the sample’s molecular composition. Employing electro-optic sampling10,12–15, we directly measure this global molecular fingerprint down to field strengths 107 times weaker than that of the excitation. This enables transillumination of intact living systems with thicknesses of the order of 0.1 millimetres, permitting broadband infrared spectroscopic probing of human cells and plant leaves. In a proof-of-concept analysis of human blood serum, temporal isolation of the infrared electric-field fingerprint from its excitation along with its sampling with attosecond timing precision results in detection sensitivity of submicrograms per millilitre of blood serum and a detectable dynamic range of molecular concentration exceeding 105. This technique promises improved molecular sensitivity and molecular coverage for probing complex, real-world biological and medical settings.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/s41586-019-1850-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:577:y:2020:i:7788:d:10.1038_s41586-019-1850-7
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-019-1850-7
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().