EconPapers    
Economics at your fingertips  
 

IL-17a promotes sociability in mouse models of neurodevelopmental disorders

Michael Douglas Reed, Yeong Shin Yim, Ralf D. Wimmer, Hyunju Kim, Changhyeon Ryu, Gwyneth Margaret Welch, Matias Andina, Hunter Oren King, Ari Waisman, Michael M. Halassa, Jun R. Huh () and Gloria B. Choi ()
Additional contact information
Michael Douglas Reed: Massachusetts Institute of Technology
Yeong Shin Yim: Massachusetts Institute of Technology
Ralf D. Wimmer: Massachusetts Institute of Technology
Hyunju Kim: Blavatnik Institute, Harvard Medical School
Changhyeon Ryu: Massachusetts Institute of Technology
Gwyneth Margaret Welch: Massachusetts Institute of Technology
Matias Andina: Massachusetts Institute of Technology
Hunter Oren King: Massachusetts Institute of Technology
Ari Waisman: University Medical Center of the Johannes Gutenberg-University Mainz
Michael M. Halassa: Massachusetts Institute of Technology
Jun R. Huh: Blavatnik Institute, Harvard Medical School
Gloria B. Choi: Massachusetts Institute of Technology

Nature, 2020, vol. 577, issue 7789, 249-253

Abstract: Abstract A subset of children with autism spectrum disorder appear to show an improvement in their behavioural symptoms during the course of a fever, a sign of systemic inflammation1,2. Here we elucidate the molecular and neural mechanisms that underlie the beneficial effects of inflammation on social behaviour deficits in mice. We compared an environmental model of neurodevelopmental disorders in which mice were exposed to maternal immune activation (MIA) during embryogenesis3,4 with mouse models that are genetically deficient for contactin-associated protein-like 2 (Cntnap2)5, fragile X mental retardation-1 (Fmr1)6 or Sh3 and multiple ankyrin repeat domains 3 (Shank3)7. We establish that the social behaviour deficits in offspring exposed to MIA can be temporarily rescued by the inflammatory response elicited by the administration of lipopolysaccharide (LPS). This behavioural rescue was accompanied by a reduction in neuronal activity in the primary somatosensory cortex dysgranular zone (S1DZ), the hyperactivity of which was previously implicated in the manifestation of behavioural phenotypes associated with offspring exposed to MIA8. By contrast, we did not observe an LPS-induced rescue of social deficits in the monogenic models. We demonstrate that the differences in responsiveness to the LPS treatment between the MIA and the monogenic models emerge from differences in the levels of cytokine production. LPS treatment in monogenic mutant mice did not induce amounts of interleukin-17a (IL-17a) comparable to those induced in MIA offspring; bypassing this difference by directly delivering IL-17a into S1DZ was sufficient to promote sociability in monogenic mutant mice as well as in MIA offspring. Conversely, abrogating the expression of IL-17 receptor subunit a (IL-17Ra) in the neurons of the S1DZ eliminated the ability of LPS to reverse the sociability phenotypes in MIA offspring. Our data support a neuroimmune mechanism that underlies neurodevelopmental disorders in which the production of IL-17a during inflammation can ameliorate the expression of social behaviour deficits by directly affecting neuronal activity in the central nervous system.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41586-019-1843-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:577:y:2020:i:7789:d:10.1038_s41586-019-1843-6

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-019-1843-6

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:577:y:2020:i:7789:d:10.1038_s41586-019-1843-6