EconPapers    
Economics at your fingertips  
 

Synthesis of rare sugar isomers through site-selective epimerization

Yong Wang, Hayden M. Carder and Alison E. Wendlandt ()
Additional contact information
Yong Wang: Massachusetts Institute of Technology
Hayden M. Carder: Massachusetts Institute of Technology
Alison E. Wendlandt: Massachusetts Institute of Technology

Nature, 2020, vol. 578, issue 7795, 403-408

Abstract: Abstract Glycans have diverse physiological functions, ranging from energy storage and structural integrity to cell signalling and the regulation of intracellular processes1. Although biomass-derived carbohydrates (such as d-glucose, d-xylose and d-galactose) are extracted on commercial scales, and serve as renewable chemical feedstocks and building blocks2,3, there are hundreds of distinct monosaccharides that typically cannot be isolated from their natural sources and must instead be prepared through multistep chemical or enzymatic syntheses4,5. These ‘rare’ sugars feature prominently in bioactive natural products and pharmaceuticals, including antiviral, antibacterial, anticancer and cardiac drugs6,7. Here we report the preparation of rare sugar isomers directly from biomass carbohydrates through site-selective epimerization reactions. Mechanistic studies establish that these reactions proceed under kinetic control, through sequential steps of hydrogen-atom abstraction and hydrogen-atom donation mediated by two distinct catalysts. This synthetic strategy provides concise and potentially extensive access to this valuable class of natural compounds.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41586-020-1937-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:578:y:2020:i:7795:d:10.1038_s41586-020-1937-1

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-020-1937-1

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:578:y:2020:i:7795:d:10.1038_s41586-020-1937-1