EconPapers    
Economics at your fingertips  
 

Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111)

Tse-An Chen, Chih-Piao Chuu, Chien-Chih Tseng, Chao-Kai Wen, H.-S. Philip Wong, Shuangyuan Pan, Rongtan Li, Tzu-Ang Chao, Wei-Chen Chueh, Yanfeng Zhang, Qiang Fu, Boris I. Yakobson (), Wen-Hao Chang () and Lain-Jong Li ()
Additional contact information
Tse-An Chen: Taiwan Semiconductor Manufacturing Company (TSMC)
Chih-Piao Chuu: Taiwan Semiconductor Manufacturing Company (TSMC)
Chien-Chih Tseng: National Chiao Tung University
Chao-Kai Wen: National Chiao Tung University
H.-S. Philip Wong: Taiwan Semiconductor Manufacturing Company (TSMC)
Shuangyuan Pan: Peking University
Rongtan Li: Chinese Academy of Sciences
Tzu-Ang Chao: Taiwan Semiconductor Manufacturing Company (TSMC)
Wei-Chen Chueh: National Chiao Tung University
Yanfeng Zhang: Peking University
Qiang Fu: Chinese Academy of Sciences
Boris I. Yakobson: Rice University
Wen-Hao Chang: National Chiao Tung University
Lain-Jong Li: Taiwan Semiconductor Manufacturing Company (TSMC)

Nature, 2020, vol. 579, issue 7798, 219-223

Abstract: Abstract Ultrathin two-dimensional (2D) semiconducting layered materials offer great potential for extending Moore’s law of the number of transistors in an integrated circuit1. One key challenge with 2D semiconductors is to avoid the formation of charge scattering and trap sites from adjacent dielectrics. An insulating van der Waals layer of hexagonal boron nitride (hBN) provides an excellent interface dielectric, efficiently reducing charge scattering2,3. Recent studies have shown the growth of single-crystal hBN films on molten gold surfaces4 or bulk copper foils5. However, the use of molten gold is not favoured by industry, owing to its high cost, cross-contamination and potential issues of process control and scalability. Copper foils might be suitable for roll-to-roll processes, but are unlikely to be compatible with advanced microelectronic fabrication on wafers. Thus, a reliable way of growing single-crystal hBN films directly on wafers would contribute to the broad adoption of 2D layered materials in industry. Previous attempts to grow hBN monolayers on Cu (111) metals have failed to achieve mono-orientation, resulting in unwanted grain boundaries when the layers merge into films6,7. Growing single-crystal hBN on such high-symmetry surface planes as Cu (111)5,8 is widely believed to be impossible, even in theory. Nonetheless, here we report the successful epitaxial growth of single-crystal hBN monolayers on a Cu (111) thin film across a two-inch c-plane sapphire wafer. This surprising result is corroborated by our first-principles calculations, suggesting that the epitaxial growth is enhanced by lateral docking of hBN to Cu (111) steps, ensuring the mono-orientation of hBN monolayers. The obtained single-crystal hBN, incorporated as an interface layer between molybdenum disulfide and hafnium dioxide in a bottom-gate configuration, enhanced the electrical performance of transistors. This reliable approach to producing wafer-scale single-crystal hBN paves the way to future 2D electronics.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
https://www.nature.com/articles/s41586-020-2009-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:579:y:2020:i:7798:d:10.1038_s41586-020-2009-2

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-020-2009-2

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:579:y:2020:i:7798:d:10.1038_s41586-020-2009-2