EconPapers    
Economics at your fingertips  
 

A bioorthogonal system reveals antitumour immune function of pyroptosis

Qinyang Wang, Yupeng Wang, Jingjin Ding, Chunhong Wang, Xuehan Zhou, Wenqing Gao, Huanwei Huang, Feng Shao () and Zhibo Liu ()
Additional contact information
Qinyang Wang: Peking University
Yupeng Wang: Chinese Academy of Medical Sciences
Jingjin Ding: National Institute of Biological Sciences
Chunhong Wang: Peking University
Xuehan Zhou: Peking University
Wenqing Gao: National Institute of Biological Sciences
Huanwei Huang: National Institute of Biological Sciences
Feng Shao: Chinese Academy of Medical Sciences
Zhibo Liu: Peking University

Nature, 2020, vol. 579, issue 7799, 421-426

Abstract: Abstract Bioorthogonal chemistry capable of operating in live animals is needed to investigate biological processes such as cell death and immunity. Recent studies have identified a gasdermin family of pore-forming proteins that executes inflammasome-dependent and -independent pyroptosis1–5. Pyroptosis is proinflammatory, but its effect on antitumour immunity is unknown. Here we establish a bioorthogonal chemical system, in which a cancer-imaging probe phenylalanine trifluoroborate (Phe-BF3) that can enter cells desilylates and ‘cleaves’ a designed linker that contains a silyl ether. This system enabled the controlled release of a drug from an antibody–drug conjugate in mice. When combined with nanoparticle-mediated delivery, desilylation catalysed by Phe-BF3 could release a client protein—including an active gasdermin—from a nanoparticle conjugate, selectively into tumour cells in mice. We applied this bioorthogonal system to gasdermin, which revealed that pyroptosis of less than 15% of tumour cells was sufficient to clear the entire 4T1 mammary tumour graft. The tumour regression was absent in immune-deficient mice or upon T cell depletion, and was correlated with augmented antitumour immune responses. The injection of a reduced, ineffective dose of nanoparticle-conjugated gasdermin along with Phe-BF3 sensitized 4T1 tumours to anti-PD1 therapy. Our bioorthogonal system based on Phe-BF3 desilylation is therefore a powerful tool for chemical biology; our application of this system suggests that pyroptosis-induced inflammation triggers robust antitumour immunity and can synergize with checkpoint blockade.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
https://www.nature.com/articles/s41586-020-2079-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:579:y:2020:i:7799:d:10.1038_s41586-020-2079-1

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-020-2079-1

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:579:y:2020:i:7799:d:10.1038_s41586-020-2079-1