EconPapers    
Economics at your fingertips  
 

Dopamine D2 receptors in discrimination learning and spine enlargement

Yusuke Iino, Takeshi Sawada, Kenji Yamaguchi, Mio Tajiri, Shin Ishii, Haruo Kasai () and Sho Yagishita ()
Additional contact information
Yusuke Iino: The University of Tokyo
Takeshi Sawada: The University of Tokyo
Kenji Yamaguchi: The University of Tokyo
Mio Tajiri: The University of Tokyo
Shin Ishii: The University of Tokyo
Haruo Kasai: The University of Tokyo
Sho Yagishita: The University of Tokyo

Nature, 2020, vol. 579, issue 7800, 555-560

Abstract: Abstract Dopamine D2 receptors (D2Rs) are densely expressed in the striatum and have been linked to neuropsychiatric disorders such as schizophrenia1,2. High-affinity binding of dopamine suggests that D2Rs detect transient reductions in dopamine concentration (the dopamine dip) during punishment learning3–5. However, the nature and cellular basis of D2R-dependent behaviour are unclear. Here we show that tone reward conditioning induces marked stimulus generalization in a manner that depends on dopamine D1 receptors (D1Rs) in the nucleus accumbens (NAc) of mice, and that discrimination learning refines the conditioning using a dopamine dip. In NAc slices, a narrow dopamine dip (as short as 0.4 s) was detected by D2Rs to disinhibit adenosine A2A receptor (A2AR)-mediated enlargement of dendritic spines in D2R-expressing spiny projection neurons (D2-SPNs). Plasticity-related signalling by Ca2+/calmodulin-dependent protein kinase II and A2ARs in the NAc was required for discrimination learning. By contrast, extinction learning did not involve dopamine dips or D2-SPNs. Treatment with methamphetamine, which dysregulates dopamine signalling, impaired discrimination learning and spine enlargement, and these impairments were reversed by a D2R antagonist. Our data show that D2Rs refine the generalized reward learning mediated by D1Rs.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
https://www.nature.com/articles/s41586-020-2115-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:579:y:2020:i:7800:d:10.1038_s41586-020-2115-1

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-020-2115-1

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:579:y:2020:i:7800:d:10.1038_s41586-020-2115-1