EconPapers    
Economics at your fingertips  
 

Copper-mediated synthesis of drug-like bicyclopentanes

Xiaheng Zhang, Russell T. Smith, Chip Le, Stefan J. McCarver, Brock T. Shireman, Nicholas I. Carruthers and David W. C. MacMillan ()
Additional contact information
Xiaheng Zhang: Merck Center for Catalysis at Princeton University
Russell T. Smith: Merck Center for Catalysis at Princeton University
Chip Le: Merck Center for Catalysis at Princeton University
Stefan J. McCarver: Janssen Research and Development
Brock T. Shireman: Janssen Research and Development
Nicholas I. Carruthers: Janssen Research and Development
David W. C. MacMillan: Merck Center for Catalysis at Princeton University

Nature, 2020, vol. 580, issue 7802, 220-226

Abstract: Abstract Multicomponent reactions are relied on in both academic and industrial synthetic organic chemistry owing to their step- and atom-economy advantages over traditional synthetic sequences1. Recently, bicyclo[1.1.1]pentane (BCP) motifs have become valuable as pharmaceutical bioisosteres of benzene rings, and in particular 1,3-disubstituted BCP moieties have become widely adopted in medicinal chemistry as para-phenyl ring replacements2. These structures are often generated from [1.1.1]propellane via opening of the internal C–C bond through the addition of either radicals or metal-based nucleophiles3–13. The resulting propellane-addition adducts are then transformed to the requisite polysubstituted BCP compounds via a range of synthetic sequences that traditionally involve multiple chemical steps. Although this approach has been effective so far, a multicomponent reaction that enables single-step access to complex and diverse polysubstituted drug-like BCP products would be more time efficient compared to current stepwise approaches. Here we report a one-step three-component radical coupling of [1.1.1]propellane to afford diverse functionalized bicyclopentanes using various radical precursors and heteroatom nucleophiles via a metallaphotoredox catalysis protocol. This copper-mediated reaction operates on short timescales (five minutes to one hour) across multiple (more than ten) nucleophile classes and can accommodate a diverse array of radical precursors, including those that generate alkyl, α-acyl, trifluoromethyl and sulfonyl radicals. This method has been used to rapidly prepare BCP analogues of known pharmaceuticals, one of which is substantially more metabolically stable than its commercial progenitor.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.nature.com/articles/s41586-020-2060-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:580:y:2020:i:7802:d:10.1038_s41586-020-2060-z

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-020-2060-z

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:580:y:2020:i:7802:d:10.1038_s41586-020-2060-z