EconPapers    
Economics at your fingertips  
 

The fate of carbon in a mature forest under carbon dioxide enrichment

Mingkai Jiang (), Belinda E. Medlyn (), John E. Drake, Remko A. Duursma, Ian C. Anderson, Craig V. M. Barton, Matthias M. Boer, Yolima Carrillo, Laura Castañeda-Gómez, Luke Collins, Kristine Y. Crous, Martin G. Kauwe, Bruna M. Santos, Kathryn M. Emmerson, Sarah L. Facey, Andrew N. Gherlenda, Teresa E. Gimeno, Shun Hasegawa, Scott N. Johnson, Astrid Kännaste, Catriona A. Macdonald, Kashif Mahmud, Ben D. Moore, Loïc Nazaries, Elizabeth H. J. Neilson, Uffe N. Nielsen, Ülo Niinemets, Nam Jin Noh, Raúl Ochoa-Hueso, Varsha S. Pathare, Elise Pendall, Johanna Pihlblad, Juan Piñeiro, Jeff R. Powell, Sally A. Power, Peter B. Reich, Alexandre A. Renchon, Markus Riegler, Riikka Rinnan, Paul D. Rymer, Roberto L. Salomón, Brajesh K. Singh, Benjamin Smith, Mark G. Tjoelker, Jennifer K. M. Walker, Agnieszka Wujeska-Klause, Jinyan Yang, Sönke Zaehle and David S. Ellsworth
Additional contact information
Mingkai Jiang: Western Sydney University
Belinda E. Medlyn: Western Sydney University
John E. Drake: Western Sydney University
Remko A. Duursma: Western Sydney University
Ian C. Anderson: Western Sydney University
Craig V. M. Barton: Western Sydney University
Matthias M. Boer: Western Sydney University
Yolima Carrillo: Western Sydney University
Laura Castañeda-Gómez: Western Sydney University
Luke Collins: Western Sydney University
Kristine Y. Crous: Western Sydney University
Martin G. Kauwe: University of New South Wales
Bruna M. Santos: University of Copenhagen
Kathryn M. Emmerson: CSIRO Oceans and Atmosphere
Sarah L. Facey: Western Sydney University
Andrew N. Gherlenda: Western Sydney University
Teresa E. Gimeno: Western Sydney University
Shun Hasegawa: Western Sydney University
Scott N. Johnson: Western Sydney University
Astrid Kännaste: Estonian University of Life Sciences
Catriona A. Macdonald: Western Sydney University
Kashif Mahmud: Western Sydney University
Ben D. Moore: Western Sydney University
Loïc Nazaries: Western Sydney University
Elizabeth H. J. Neilson: University of Copenhagen
Uffe N. Nielsen: Western Sydney University
Ülo Niinemets: Estonian University of Life Sciences
Nam Jin Noh: Western Sydney University
Raúl Ochoa-Hueso: Western Sydney University
Varsha S. Pathare: Western Sydney University
Elise Pendall: Western Sydney University
Johanna Pihlblad: Western Sydney University
Juan Piñeiro: Western Sydney University
Jeff R. Powell: Western Sydney University
Sally A. Power: Western Sydney University
Peter B. Reich: Western Sydney University
Alexandre A. Renchon: Western Sydney University
Markus Riegler: Western Sydney University
Riikka Rinnan: University of Copenhagen
Paul D. Rymer: Western Sydney University
Roberto L. Salomón: Ghent University
Brajesh K. Singh: Western Sydney University
Benjamin Smith: Western Sydney University
Mark G. Tjoelker: Western Sydney University
Jennifer K. M. Walker: Western Sydney University
Agnieszka Wujeska-Klause: Western Sydney University
Jinyan Yang: Western Sydney University
Sönke Zaehle: Max Planck Institute for Biogeochemistry
David S. Ellsworth: Western Sydney University

Nature, 2020, vol. 580, issue 7802, 227-231

Abstract: Abstract Atmospheric carbon dioxide enrichment (eCO2) can enhance plant carbon uptake and growth1–5, thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO2 concentration6. Although evidence gathered from young aggrading forests has generally indicated a strong CO2 fertilization effect on biomass growth3–5, it is unclear whether mature forests respond to eCO2 in a similar way. In mature trees and forest stands7–10, photosynthetic uptake has been found to increase under eCO2 without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO2 unclear4,5,7–11. Here using data from the first ecosystem-scale Free-Air CO2 Enrichment (FACE) experiment in a mature forest, we constructed a comprehensive ecosystem carbon budget to track the fate of carbon as the forest responded to four years of eCO2 exposure. We show that, although the eCO2 treatment of +150 parts per million (+38 per cent) above ambient levels induced a 12 per cent (+247 grams of carbon per square metre per year) increase in carbon uptake through gross primary production, this additional carbon uptake did not lead to increased carbon sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted back into the atmosphere via several respiratory fluxes, with increased soil respiration alone accounting for half of the total uptake surplus. Our results call into question the predominant thinking that the capacity of forests to act as carbon sinks will be generally enhanced under eCO2, and challenge the efficacy of climate mitigation strategies that rely on ubiquitous CO2 fertilization as a driver of increased carbon sinks in global forests.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.nature.com/articles/s41586-020-2128-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:580:y:2020:i:7802:d:10.1038_s41586-020-2128-9

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-020-2128-9

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:580:y:2020:i:7802:d:10.1038_s41586-020-2128-9