Direct-bandgap emission from hexagonal Ge and SiGe alloys
Elham M. T. Fadaly,
Alain Dijkstra,
Jens Renè Suckert,
Dorian Ziss,
Marvin A. J. van Tilburg,
Chenyang Mao,
Yizhen Ren,
Victor T. van Lange,
Ksenia Korzun,
Sebastian Kölling,
Marcel A. Verheijen,
David Busse,
Claudia Rödl,
Jürgen Furthmüller,
Friedhelm Bechstedt,
Julian Stangl,
Jonathan J. Finley,
Silvana Botti,
Jos E. M. Haverkort and
Erik P. A. M. Bakkers ()
Additional contact information
Elham M. T. Fadaly: Eindhoven University of Technology
Alain Dijkstra: Eindhoven University of Technology
Jens Renè Suckert: Friedrich-Schiller-Universität Jena
Dorian Ziss: Johannes Kepler University
Marvin A. J. van Tilburg: Eindhoven University of Technology
Chenyang Mao: Eindhoven University of Technology
Yizhen Ren: Eindhoven University of Technology
Victor T. van Lange: Eindhoven University of Technology
Ksenia Korzun: Eindhoven University of Technology
Sebastian Kölling: Eindhoven University of Technology
Marcel A. Verheijen: Eindhoven University of Technology
David Busse: Technische Universität München
Claudia Rödl: Friedrich-Schiller-Universität Jena
Jürgen Furthmüller: Friedrich-Schiller-Universität Jena
Friedhelm Bechstedt: Friedrich-Schiller-Universität Jena
Julian Stangl: Johannes Kepler University
Jonathan J. Finley: Technische Universität München
Silvana Botti: Friedrich-Schiller-Universität Jena
Jos E. M. Haverkort: Eindhoven University of Technology
Erik P. A. M. Bakkers: Eindhoven University of Technology
Nature, 2020, vol. 580, issue 7802, 205-209
Abstract:
Abstract Silicon crystallized in the usual cubic (diamond) lattice structure has dominated the electronics industry for more than half a century. However, cubic silicon (Si), germanium (Ge) and SiGe alloys are all indirect-bandgap semiconductors that cannot emit light efficiently. The goal1 of achieving efficient light emission from group-IV materials in silicon technology has been elusive for decades2–6. Here we demonstrate efficient light emission from direct-bandgap hexagonal Ge and SiGe alloys. We measure a sub-nanosecond, temperature-insensitive radiative recombination lifetime and observe an emission yield similar to that of direct-bandgap group-III–V semiconductors. Moreover, we demonstrate that, by controlling the composition of the hexagonal SiGe alloy, the emission wavelength can be continuously tuned over a broad range, while preserving the direct bandgap. Our experimental findings are in excellent quantitative agreement with ab initio theory. Hexagonal SiGe embodies an ideal material system in which to combine electronic and optoelectronic functionalities on a single chip, opening the way towards integrated device concepts and information-processing technologies.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41586-020-2150-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:580:y:2020:i:7802:d:10.1038_s41586-020-2150-y
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-020-2150-y
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().