EconPapers    
Economics at your fingertips  
 

Separase-triggered apoptosis enforces minimal length of mitosis

Susanne Hellmuth and Olaf Stemmann ()
Additional contact information
Susanne Hellmuth: University of Bayreuth
Olaf Stemmann: University of Bayreuth

Nature, 2020, vol. 580, issue 7804, 542-547

Abstract: Abstract Prolonged mitosis often results in apoptosis1. Shortened mitosis causes tumorigenic aneuploidy, but it is unclear whether it also activates the apoptotic machinery2. Separase, a cysteine protease and trigger of all eukaryotic anaphases, has a caspase-like catalytic domain but has not previously been associated with cell death3,4. Here we show that human cells that enter mitosis with already active separase rapidly undergo death in mitosis owing to direct cleavage of anti-apoptotic MCL1 and BCL-XL by separase. Cleavage not only prevents MCL1 and BCL-XL from sequestering pro-apoptotic BAK, but also converts them into active promoters of death in mitosis. Our data strongly suggest that the deadliest cleavage fragment, the C-terminal half of MCL1, forms BAK/BAX-like pores in the mitochondrial outer membrane. MCL1 and BCL-XL are turned into separase substrates only upon phosphorylation by NEK2A. Early mitotic degradation of this kinase is therefore crucial for preventing apoptosis upon scheduled activation of separase in metaphase. Speeding up mitosis by abrogation of the spindle assembly checkpoint results in a temporal overlap of the enzymatic activities of NEK2A and separase and consequently in cell death. We propose that NEK2A and separase jointly check on spindle assembly checkpoint integrity and eliminate cells that are prone to chromosome missegregation owing to accelerated progression through early mitosis.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41586-020-2187-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:580:y:2020:i:7804:d:10.1038_s41586-020-2187-y

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-020-2187-y

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:580:y:2020:i:7804:d:10.1038_s41586-020-2187-y