EconPapers    
Economics at your fingertips  
 

A plant genetic network for preventing dysbiosis in the phyllosphere

Tao Chen, Kinya Nomura, Xiaolin Wang, Reza Sohrabi, Jin Xu, Lingya Yao, Bradley C. Paasch, Li Ma, James Kremer, Yuti Cheng, Li Zhang, Nian Wang, Ertao Wang, Xiu-Fang Xin () and Sheng Yang He ()
Additional contact information
Tao Chen: Michigan State University
Kinya Nomura: Michigan State University
Xiaolin Wang: Chinese Academy of Sciences
Reza Sohrabi: Michigan State University
Jin Xu: University of Florida
Lingya Yao: Chinese Academy of Sciences
Bradley C. Paasch: Michigan State University
Li Ma: Michigan State University
James Kremer: Michigan State University
Yuti Cheng: Michigan State University
Li Zhang: Michigan State University
Nian Wang: University of Florida
Ertao Wang: Chinese Academy of Sciences
Xiu-Fang Xin: Chinese Academy of Sciences
Sheng Yang He: Michigan State University

Nature, 2020, vol. 580, issue 7805, 653-657

Abstract: Abstract The aboveground parts of terrestrial plants, collectively called the phyllosphere, have a key role in the global balance of atmospheric carbon dioxide and oxygen. The phyllosphere represents one of the most abundant habitats for microbiota colonization. Whether and how plants control phyllosphere microbiota to ensure plant health is not well understood. Here we show that the Arabidopsis quadruple mutant (min7 fls2 efr cerk1; hereafter, mfec)1, simultaneously defective in pattern-triggered immunity and the MIN7 vesicle-trafficking pathway, or a constitutively activated cell death1 (cad1) mutant, carrying a S205F mutation in a membrane-attack-complex/perforin (MACPF)-domain protein, harbour altered endophytic phyllosphere microbiota and display leaf-tissue damage associated with dysbiosis. The Shannon diversity index and the relative abundance of Firmicutes were markedly reduced, whereas Proteobacteria were enriched in the mfec and cad1S205F mutants, bearing cross-kingdom resemblance to some aspects of the dysbiosis that occurs in human inflammatory bowel disease. Bacterial community transplantation experiments demonstrated a causal role of a properly assembled leaf bacterial community in phyllosphere health. Pattern-triggered immune signalling, MIN7 and CAD1 are found in major land plant lineages and are probably key components of a genetic network through which terrestrial plants control the level and nurture the diversity of endophytic phyllosphere microbiota for survival and health in a microorganism-rich environment.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
https://www.nature.com/articles/s41586-020-2185-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:580:y:2020:i:7805:d:10.1038_s41586-020-2185-0

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-020-2185-0

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:580:y:2020:i:7805:d:10.1038_s41586-020-2185-0