EconPapers    
Economics at your fingertips  
 

A general carbonyl alkylative amination for tertiary amine synthesis

Roopender Kumar, Nils J. Flodén, William G. Whitehurst and Matthew J. Gaunt ()
Additional contact information
Roopender Kumar: University of Cambridge
Nils J. Flodén: University of Cambridge
William G. Whitehurst: University of Cambridge
Matthew J. Gaunt: University of Cambridge

Nature, 2020, vol. 581, issue 7809, 415-420

Abstract: Abstract The ubiquity of tertiary alkylamines in pharmaceutical and agrochemical agents, natural products and small-molecule biological probes1,2 has stimulated efforts towards their streamlined synthesis3–9. Arguably the most robust method for the synthesis of tertiary alkylamines is carbonyl reductive amination3, which comprises two elementary steps: the condensation of a secondary alkylamine with an aliphatic aldehyde to form an all-alkyl-iminium ion, which is subsequently reduced by a hydride reagent. Direct strategies have been sought for a ‘higher order’ variant of this reaction via the coupling of an alkyl fragment with an alkyl-iminium ion that is generated in situ10–14. However, despite extensive efforts, the successful realization of a ‘carbonyl alkylative amination’ has not yet been achieved. Here we present a practical and general synthesis of tertiary alkylamines through the addition of alkyl radicals to all-alkyl-iminium ions. The process is facilitated by visible light and a silane reducing agent, which trigger a distinct radical initiation step to establish a chain process. This operationally straightforward, metal-free and modular transformation forms tertiary amines, without structural constraint, via the coupling of aldehydes and secondary amines with alkyl halides. The structural and functional diversity of these readily available precursors provides a versatile and flexible strategy for the streamlined synthesis of complex tertiary amines.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41586-020-2213-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:581:y:2020:i:7809:d:10.1038_s41586-020-2213-0

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-020-2213-0

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:581:y:2020:i:7809:d:10.1038_s41586-020-2213-0