EconPapers    
Economics at your fingertips  
 

Design of robust superhydrophobic surfaces

Dehui Wang, Qiangqiang Sun, Matti J. Hokkanen, Chenglin Zhang, Fan-Yen Lin, Qiang Liu, Shun-Peng Zhu, Tianfeng Zhou, Qing Chang, Bo He, Quan Zhou, Longquan Chen, Zuankai Wang, Robin H. A. Ras () and Xu Deng ()
Additional contact information
Dehui Wang: University of Electronic Science and Technology of China
Qiangqiang Sun: University of Electronic Science and Technology of China
Matti J. Hokkanen: Aalto University School of Science
Chenglin Zhang: University of Electronic Science and Technology of China
Fan-Yen Lin: Bruker Nano Surfaces Division
Qiang Liu: University of Electronic Science and Technology of China
Shun-Peng Zhu: University of Electronic Science and Technology of China
Tianfeng Zhou: Beijing Institute of Technology
Qing Chang: Hanergy Chengdu R&D Center
Bo He: Hanergy Chengdu R&D Center
Quan Zhou: Aalto University School of Electrical Engineering
Longquan Chen: University of Electronic Science and Technology of China
Zuankai Wang: City University of Hong Kong
Robin H. A. Ras: Aalto University School of Science
Xu Deng: University of Electronic Science and Technology of China

Nature, 2020, vol. 582, issue 7810, 55-59

Abstract: Abstract The ability of superhydrophobic surfaces to stay dry, self-clean and avoid biofouling is attractive for applications in biotechnology, medicine and heat transfer1–10. Water droplets that contact these surfaces must have large apparent contact angles (greater than 150 degrees) and small roll-off angles (less than 10 degrees). This can be realized for surfaces that have low-surface-energy chemistry and micro- or nanoscale surface roughness, minimizing contact between the liquid and the solid surface11–17. However, rough surfaces—for which only a small fraction of the overall area is in contact with the liquid—experience high local pressures under mechanical load, making them fragile and highly susceptible to abrasion18. Additionally, abrasion exposes underlying materials and may change the local nature of the surface from hydrophobic to hydrophilic19, resulting in the pinning of water droplets to the surface. It has therefore been assumed that mechanical robustness and water repellency are mutually exclusive surface properties. Here we show that robust superhydrophobicity can be realized by structuring surfaces at two different length scales, with a nanostructure design to provide water repellency and a microstructure design to provide durability. The microstructure is an interconnected surface frame containing ‘pockets’ that house highly water-repellent and mechanically fragile nanostructures. This surface frame acts as ‘armour’, preventing the removal of the nanostructures by abradants that are larger than the frame size. We apply this strategy to various substrates—including silicon, ceramic, metal and transparent glass—and show that the water repellency of the resulting superhydrophobic surfaces is preserved even after abrasion by sandpaper and by a sharp steel blade. We suggest that this transparent, mechanically robust, self-cleaning glass could help to negate the dust-contamination issue that leads to a loss of efficiency in solar cells. Our design strategy could also guide the development of other materials that need to retain effective self-cleaning, anti-fouling or heat-transfer abilities in harsh operating environments.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (23)

Downloads: (external link)
https://www.nature.com/articles/s41586-020-2331-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:582:y:2020:i:7810:d:10.1038_s41586-020-2331-8

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-020-2331-8

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:582:y:2020:i:7810:d:10.1038_s41586-020-2331-8