Leveraging excited-state coherence for synthetic control of ultrafast dynamics
Bryan C. Paulus,
Sara L. Adelman,
Lindsey L. Jamula and
James K. McCusker ()
Additional contact information
Bryan C. Paulus: Michigan State University
Sara L. Adelman: Michigan State University
Lindsey L. Jamula: Michigan State University
James K. McCusker: Michigan State University
Nature, 2020, vol. 582, issue 7811, 214-218
Abstract:
Abstract Design-specific control over excited-state dynamics is necessary for any application seeking to convert light into chemical potential. Such control is especially desirable in iron(ii)-based chromophores, which are an Earth-abundant option for a wide range of photo-induced electron-transfer applications including solar energy conversion1 and catalysis2. However, the sub-200-femtosecond lifetimes of the redox-active metal-to-ligand charge transfer (MLCT) excited states typically encountered in these compounds have largely precluded their widespread use3. Here we show that the MLCT lifetime of an iron(ii) complex can be manipulated using information from excited-state quantum coherences as a guide to implementing synthetic modifications that can disrupt the reaction coordinate associated with MLCT decay. We developed a structurally tunable molecular platform in which vibronic coherences—that is, coherences reflecting a coupling of vibrational and electronic degrees of freedom—were observed in ultrafast time-resolved absorption measurements after MLCT excitation of the molecule. Following visualization of the vibrational modes associated with these coherences, we synthetically modified an iron(ii) chromophore to interfere with these specific atomic motions. The redesigned compound exhibits a MLCT lifetime that is more than a factor of 20 longer than that of the parent compound, indicating that the structural modification at least partially decoupled these degrees of freedom from the population dynamics associated with the electronic-state evolution of the system. These results demonstrate that using excited-state coherence data may be used to tailor ultrafast excited-state dynamics through targeted synthetic design.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41586-020-2353-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:582:y:2020:i:7811:d:10.1038_s41586-020-2353-2
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-020-2353-2
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().