Observation of branched flow of light
Anatoly Patsyk,
Uri Sivan,
Mordechai Segev () and
Miguel A. Bandres ()
Additional contact information
Anatoly Patsyk: Technion-Israel Institute of Technology
Uri Sivan: Technion-Israel Institute of Technology
Mordechai Segev: Technion-Israel Institute of Technology
Miguel A. Bandres: University of Central Florida
Nature, 2020, vol. 583, issue 7814, 60-65
Abstract:
Abstract When waves propagate through a weak disordered potential with correlation length larger than the wavelength, they form channels (branches) of enhanced intensity that keep dividing as the waves propagate1. This fundamental wave phenomenon is known as branched flow. It was first observed for electrons1–6 and for microwave cavities7,8, and it is generally expected for waves with vastly different wavelengths, for example, branched flow has been suggested as a focusing mechanism for ocean waves9–11, and was suggested to occur also in sound waves12 and ultrarelativistic electrons in graphene13. Branched flow may act as a trigger for the formation of extreme nonlinear events14–17 and as a channel through which energy is transmitted in a scattering medium18. Here we present the experimental observation of the branched flow of light. We show that, as light propagates inside a thin soap membrane, smooth thickness variations in the film act as a correlated disordered potential, focusing the light into filaments that display the features of branched flow: scaling of the distance to the first branching point and the probability distribution of the intensity. We find that, counterintuitively, despite the random variations in the medium and the linear nature of the effect, the filaments remain collimated throughout their paths. Bringing branched flow to the field of optics, with its full arsenal of tools, opens the door to the investigation of a plethora of new ideas such as branched flow in nonlinear media, in curved space or in active systems with gain. Furthermore, the labile nature of soap films leads to a regime in which the branched flow of light interacts and affects the underlying disorder through radiation pressure and gradient force.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41586-020-2376-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:583:y:2020:i:7814:d:10.1038_s41586-020-2376-8
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-020-2376-8
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().