EconPapers    
Economics at your fingertips  
 

Photoenzymatic enantioselective intermolecular radical hydroalkylation

Xiaoqiang Huang, Binju Wang, Yajie Wang, Guangde Jiang, Jianqiang Feng and Huimin Zhao ()
Additional contact information
Xiaoqiang Huang: University of Illinois at Urbana-Champaign
Binju Wang: Xiamen University
Yajie Wang: University of Illinois at Urbana-Champaign
Guangde Jiang: University of Illinois at Urbana-Champaign
Jianqiang Feng: Xiamen University
Huimin Zhao: University of Illinois at Urbana-Champaign

Nature, 2020, vol. 584, issue 7819, 69-74

Abstract: Abstract Enzymes are increasingly explored for use in asymmetric synthesis1–3, but their applications are generally limited by the reactions available to naturally occurring enzymes. Recently, interest in photocatalysis4 has spurred the discovery of novel reactivity from known enzymes5. However, so far photoinduced enzymatic catalysis6 has not been used for the cross-coupling of two molecules. For example, the intermolecular coupling of alkenes with α-halo carbonyl compounds through a visible-light-induced radical hydroalkylation, which could provide access to important γ-chiral carbonyl compounds, has not yet been achieved by enzymes. The major challenges are the inherent poor photoreactivity of enzymes and the difficulty in achieving stereochemical control of the remote prochiral radical intermediate7. Here we report a visible-light-induced intermolecular radical hydroalkylation of terminal alkenes that does not occur naturally, catalysed by an ‘ene’ reductase using readily available α-halo carbonyl compounds as reactants. This method provides an efficient approach to the synthesis of various carbonyl compounds bearing a γ-stereocentre with excellent yields and enantioselectivities (up to 99 per cent yield with 99 per cent enantiomeric excess), which otherwise are difficult to access using chemocatalysis. Mechanistic studies suggest that the formation of the complex of the substrates (α-halo carbonyl compounds) and the ‘ene’ reductase triggers the enantioselective photoinduced radical reaction. Our work further expands the reactivity repertoire of biocatalytic, synthetically useful asymmetric transformations by the merger of photocatalysis and enzyme catalysis.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41586-020-2406-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:584:y:2020:i:7819:d:10.1038_s41586-020-2406-6

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-020-2406-6

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:584:y:2020:i:7819:d:10.1038_s41586-020-2406-6