Unique homeobox codes delineate all the neuron classes of C. elegans
Molly B. Reilly,
Cyril Cros,
Erdem Varol,
Eviatar Yemini and
Oliver Hobert ()
Additional contact information
Molly B. Reilly: Columbia University
Cyril Cros: Columbia University
Erdem Varol: Columbia University
Eviatar Yemini: Columbia University
Oliver Hobert: Columbia University
Nature, 2020, vol. 584, issue 7822, 595-601
Abstract:
Abstract It is not known at present whether neuronal cell-type diversity—defined by cell-type-specific anatomical, biophysical, functional and molecular signatures—can be reduced to relatively simple molecular descriptors of neuronal identity1. Here we show, through examination of the expression of all of the conserved homeodomain proteins encoded by the Caenorhabditis elegans genome2, that the complete set of 118 neuron classes of C. elegans can be described individually by unique combinations of the expression of homeodomain proteins, thereby providing—to our knowledge—the simplest currently known descriptor of neuronal diversity. Computational and genetic loss-of-function analyses corroborate the notion that homeodomain proteins not only provide unique descriptors of neuron type, but also have a critical role in specifying neuronal identity. We speculate that the pervasive use of homeobox genes in defining unique neuronal identities reflects the evolutionary history of neuronal cell-type specification.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
https://www.nature.com/articles/s41586-020-2618-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:584:y:2020:i:7822:d:10.1038_s41586-020-2618-9
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-020-2618-9
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().