EconPapers    
Economics at your fingertips  
 

Penning trap mass measurements of the deuteron and the HD+ molecular ion

Sascha Rau (), Fabian Heiße, Florian Köhler-Langes, Sangeetha Sasidharan, Raphael Haas, Dennis Renisch, Christoph E. Düllmann, Wolfgang Quint, Sven Sturm and Klaus Blaum
Additional contact information
Sascha Rau: Max-Planck-Institut für Kernphysik
Fabian Heiße: Max-Planck-Institut für Kernphysik
Florian Köhler-Langes: Max-Planck-Institut für Kernphysik
Sangeetha Sasidharan: Max-Planck-Institut für Kernphysik
Raphael Haas: GSI Helmholtzzentrum für Schwerionenforschung GmbH
Dennis Renisch: Johannes Gutenberg-Universität
Christoph E. Düllmann: GSI Helmholtzzentrum für Schwerionenforschung GmbH
Wolfgang Quint: GSI Helmholtzzentrum für Schwerionenforschung GmbH
Sven Sturm: Max-Planck-Institut für Kernphysik
Klaus Blaum: Max-Planck-Institut für Kernphysik

Nature, 2020, vol. 585, issue 7823, 43-47

Abstract: Abstract The masses of the lightest atomic nuclei and the electron mass1 are interlinked, and their values affect observables in atomic2, molecular3–5 and neutrino physics6, as well as metrology. The most precise values for these fundamental parameters come from Penning trap mass spectrometry, which achieves relative mass uncertainties of the order of 10−11. However, redundancy checks using data from different experiments reveal considerable inconsistencies in the masses of the proton, the deuteron and the helion (the nucleus of helium-3), suggesting that the uncertainty of these values may have been underestimated. Here we present results from absolute mass measurements of the deuteron and the HD+ molecular ion using 12C as a mass reference. Our value for the deuteron mass, 2.013553212535(17) atomic mass units, has better precision than the CODATA value7 by a factor of 2.4 and differs from it by 4.8 standard deviations. With a relative uncertainty of eight parts per trillion, this is the most precise mass value measured directly in atomic mass units. Furthermore, our measurement of the mass of the HD+ molecular ion, 3.021378241561(61) atomic mass units, not only allows a rigorous consistency check of our results for the masses of the deuteron (this work) and the proton8, but also establishes an additional link for the masses of tritium9 and helium-3 (ref. 10) to the atomic mass unit. Combined with a recent measurement of the deuteron-to-proton mass ratio11, the uncertainty of the reference value of the proton mass7 can be reduced by a factor of three.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41586-020-2628-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:585:y:2020:i:7823:d:10.1038_s41586-020-2628-7

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-020-2628-7

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:585:y:2020:i:7823:d:10.1038_s41586-020-2628-7