EconPapers    
Economics at your fingertips  
 

A submicrometre silicon-on-insulator resonator for ultrasound detection

Rami Shnaiderman (), Georg Wissmeyer, Okan Ülgen, Qutaiba Mustafa, Andriy Chmyrov and Vasilis Ntziachristos ()
Additional contact information
Rami Shnaiderman: Technische Universität München
Georg Wissmeyer: Technische Universität München
Okan Ülgen: Technische Universität München
Qutaiba Mustafa: Technische Universität München
Andriy Chmyrov: Technische Universität München
Vasilis Ntziachristos: Technische Universität München

Nature, 2020, vol. 585, issue 7825, 372-378

Abstract: Abstract Ultrasound detectors use high-frequency sound waves to image objects and measure distances, but the resolution of these readings is limited by the physical dimensions of the detecting element. Point-like broadband ultrasound detection can greatly increase the resolution of ultrasonography and optoacoustic (photoacoustic) imaging1,2, but current ultrasound detectors, such as those used for medical imaging, cannot be miniaturized sufficiently. Piezoelectric transducers lose sensitivity quadratically with size reduction3, and optical microring resonators4 and Fabry–Pérot etalons5 cannot adequately confine light to dimensions smaller than about 50 micrometres. Micromachining methods have been used to generate arrays of capacitive6 and piezoelectric7 transducers, but with bandwidths of only a few megahertz and dimensions exceeding 70 micrometres. Here we use the widely available silicon-on-insulator technology to develop a miniaturized ultrasound detector, with a sensing area of only 220 nanometres by 500 nanometres. The silicon-on-insulator-based optical resonator design provides per-area sensitivity that is 1,000 times higher than that of microring resonators and 100,000,000 times better than that of piezoelectric detectors. Our design also enables an ultrawide detection bandwidth, reaching 230 megahertz at −6 decibels. In addition to making the detectors suitable for manufacture in very dense arrays, we show that the submicrometre sensing area enables super-resolution detection and imaging performance. We demonstrate imaging of features 50 times smaller than the wavelength of ultrasound detected. Our detector enables ultra-miniaturization of ultrasound readings, enabling ultrasound imaging at a resolution comparable to that achieved with optical microscopy, and potentially enabling the development of very dense ultrasound arrays on a silicon chip.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.nature.com/articles/s41586-020-2685-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:585:y:2020:i:7825:d:10.1038_s41586-020-2685-y

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-020-2685-y

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:585:y:2020:i:7825:d:10.1038_s41586-020-2685-y